8. (i) 16 units2 (ii) 16 units (iii) Yes. Numerous valid answers, e.g. a rectangle with length of 2 and width of 8. Area = 16 units2
perimeter = 20 units. If it had a length of 1 and a width of 16, area would be 16 units2
but
perimeter would be 34 units. Area is the same, but perimeters are not.
(iv) 8 units × 2 units = 16 units2 16 units × 1 unit = 16 units2
(v)
(a) Largest perimeter = 34 units (b) Smallest perimeter = 16 units
(vi) False. It is possible to keep the same area and change the perimeter of a rectangle (see part (v) above).
Unit 2 Sets, number and chance
Practice questions 2.1 1. (i) {a, b, c, d, e} (ii)
{red, orange, yellow, green, blue, indigo, violet}
(iii) {a, p, l, e} (iv) {O, A} (v) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (vi) {September, October, November, December}
2. (i) Months of the year starting with ‘A’ (ii) Fingers on a hand (iii) Days of the week starting with ‘T’ (iv) First four planets of the solar system
3. 1 = C; 2 = A; 3 = B; 4 =E; 5 = D
4. (i) 2 ∈ℚ (ii) May ∉ {days of the week} (iii) #D = 8 (iv) {1, 2} ⊂ S (v) J = ∅ (vi) 2 ∉ {letters of the alphabet}
5. (i) A = B, the elements of A and B are the same
(ii) A ≠ B, the elements of A and B are not the same
(iii) A ≠ B, the elements of A and B are not the same
(iv) A ≠ B, the elements of A and B are not the same
6. All are sets except (ii) Justification: (i), (iii) and (iv) are a well- defined collection of objects with something in common but (ii) is not well-defined.
7. (i) B ⊄ A, (ii) C ⊂ A, (iii) B ⊄ C, (iv) C ⊂ C, (v)∅ ⊂ B, (vi) C ⊂ B
8. (i)
{1, 2, 3, 4, 5}; X = {x | x is one of the first 5 counting numbers}
(ii) {M, A, T, H, E, I, C, S}; X = {x | x is a letter in the word MATHEMATICS}
(iii) {2, 3, 4, 5, 6, 7}; set of numbers between 2 and 7 inclusive
9. (i) Always true (ii) Sometimes true (iii) Always true (iv) Never true
10. (i) True: 13 ∈ P, 9 ∈ P but 22 ∉ P (ii) True: 5 ∈ P, 7 ∈ P and 12 ∈ Q (iii) False: 3 ∈ P, 13 ∈ P but 10 ∈ Q (iv) True: 7 ∉ Q, 9 ∉ Q but 16 ∈ Q
, Practice questions 2.2.1
1. (i) {1, 2, 3, 6} (ii) {1, 3, 5, 15} (iii) {1, 3, 9, 27} (iv) {1, 2, 4, 5, 8, 10, 20, 40} (v) {1, 2, 4, 8, 16, 32, 64}
2. (i) {2, 4, 6, 8, 10 …} (ii) {3, 6, 9, 12, 15 …} (iii) {5, 10, 15, 20, 25 …} (iv) {6, 12, 18, 24, 30 …} (v) {8, 16, 24, 32, 40 …}
3. (i) {2, 3, 5, 7} (ii) {17, 19, 23} (iii) {101, 103, 107, 109}
4. (i) 2 × 3 × 3 (ii) 2 × 2 × 2 × 2 × 2 (iii) 2 × 2 × 2 × 5 (iv) 3 × 3 × 5 (v) 2 × 2 × 2 × 3 × 3 (vi) 2 × 2 × 2 × 2 × 3 × 3
5. (i) 2, (ii) 9, (iii) 6, (iv) 4, (v) 6, (vi) 4, (vii) 15, (viii) 2
6. (i) 20, (ii) 24, (iii) 18, (iv) 30, (v) 24, (vi) 12, (vii) 30, (viii) 24
7. (a)
(i) 60: 2× 2 × 3 × 5 (ii) 96: 2 × 2 × 2 × 2 × 2 × 3
(b) 12 (c) 480
8. 8 metres 9. 60th day 10. 3 pieces 11. (i) Even, e.g. LCM of 10 and 15 = 30 (ii) HCF is smaller number; LCM is larger number, e.g. 3 and 6: HCF = 3; LCM = 6
(iii) HCF = 1; LCM = product of the two numbers, e.g. 3 and 5: HCF = 1; LCM = 15
Practice questions 2.2.2 1. (i) False, e.g. −3 ∉ ℕ, not positive (ii) True, e.g. 3 ∈ ℚ, can be written as 3
(iii) False, e.g. −1 number
(v) True, e.g. 5 ∈ ℤ, ℕ ⊂ ℤ (vi) False, e.g. −3
__ 1
(vii) False, e.g. {1 __
not a whole number whole numbers
2, 1 __
__ 2 ∉ ℤ, not a whole
(iv) True, e.g. −3 ∈ ℚ, can be written as −3
__ 4 ∉ ℕ, negative and
3…} ⊄ ℤ, not
(viii) True, e.g. {1, 2, 3…} ⊂ ℤ, positive whole numbers
2. (i) {1, 2, 3, 4, 5} (ii) {11, 13, 17, 19} (iii) {–9, –7, –5, –3, –1, 1, 3, 5} (iv) {26, 28, 30, 32, 34} (v) {3, 6, 9, 12, 15, 18, 21, 24, 27} (vi) {1, 2, 4, 8, 16, 32}
3. (a)
(i) Positive whole numbers (ii) ℕ
(b) (i) Whole numbers, positive and negative
(ii) ℤ (c) 4. (i) 1
(i) Numbers that can be written as fractions
(ii) ℚ
5. (i) Sometimes true (ii) Sometimes true (iii) Always true (iv) Never true (v) Always true
__ 3, (ii) 1
__ 2, (iii) 1
__ 4, (iv) 1
__ 5
Practice questions 2.3
2. (i) A = {1, 2, 3, 5, 6, 9} (ii) B = {2, 3, 4, 5, 7, 8, 10} (iii) A∩B = {2, 3, 5} (iv) A∪B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (v) 핌 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
3. (a)
(i) A = {a, b, e, h, q, t} (ii) B = { a, d, f, g, h, j} (iii) 핌 = {a, b, d, e, f, g, h, i, j, p, q, y, t}
(b) (i) 10 (ii) 2
7. (i) 12 people play both basketball and football
(ii) 52 people play basketball only (iii) 63 people play football only (iv) 8 people play neither basketball or football
(v) 115 (vi) 135
8. (i) 25, (ii) 7, (iii) 22, (iv) 47 9. (i) A: {1, 2, 3, 4, 6, 8, 12, 16, 24, 48} B: {1, 2, 4, 5, 10, 20}
(iii) The factors of both 48 and 20 (iv) 4
10. (i) (ii)
(a) 핌 (b) All of the elements
(a) H∪N (b) All of the elements in both H and N
__ 1
(iii) (a) H∩N (b) Elements in common between H and N
11. (a)
(i) P = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
(ii) Q = {3, 6, 9, 12, 15, 18} (iii) P∪Q = {1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19}
(iv) P∩Q = {3, 9, 15}
(b) (i) 10 (ii) 6 (iii) 13 (iv) 3
12. (i) A = { 2, 3, 5, 7}, (ii) B = {2, 4, 6, 8}, (iv) A∪B = {2, 3, 4, 5, 6, 7, 8}, (v) 1, (vi) Yes, 2 ∈ A
Practice questions 2.4 1. (i) 1 (ii) 1 (iii) 1 (iv) 3 (v) 1
_ 2; 0·5;50%
_ 4; 0·25;25%
_ 4; 0·25;25%
_ 4; 0·75;75%
_ 6; 0·16˙ ; 162
_ 3%
566
Linking Thinking 1
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284 |
Page 285 |
Page 286 |
Page 287 |
Page 288 |
Page 289 |
Page 290 |
Page 291 |
Page 292 |
Page 293 |
Page 294 |
Page 295 |
Page 296 |
Page 297 |
Page 298 |
Page 299 |
Page 300 |
Page 301 |
Page 302 |
Page 303 |
Page 304 |
Page 305 |
Page 306 |
Page 307 |
Page 308 |
Page 309 |
Page 310 |
Page 311 |
Page 312 |
Page 313 |
Page 314 |
Page 315 |
Page 316 |
Page 317 |
Page 318 |
Page 319 |
Page 320 |
Page 321 |
Page 322 |
Page 323 |
Page 324 |
Page 325 |
Page 326 |
Page 327 |
Page 328 |
Page 329 |
Page 330 |
Page 331 |
Page 332 |
Page 333 |
Page 334 |
Page 335 |
Page 336 |
Page 337 |
Page 338 |
Page 339 |
Page 340 |
Page 341 |
Page 342 |
Page 343 |
Page 344 |
Page 345 |
Page 346 |
Page 347 |
Page 348 |
Page 349 |
Page 350 |
Page 351 |
Page 352 |
Page 353 |
Page 354 |
Page 355 |
Page 356 |
Page 357 |
Page 358 |
Page 359 |
Page 360 |
Page 361 |
Page 362 |
Page 363 |
Page 364 |
Page 365 |
Page 366 |
Page 367 |
Page 368 |
Page 369 |
Page 370 |
Page 371 |
Page 372 |
Page 373 |
Page 374 |
Page 375 |
Page 376 |
Page 377 |
Page 378 |
Page 379 |
Page 380 |
Page 381 |
Page 382 |
Page 383 |
Page 384 |
Page 385 |
Page 386 |
Page 387 |
Page 388 |
Page 389 |
Page 390 |
Page 391 |
Page 392 |
Page 393 |
Page 394 |
Page 395 |
Page 396 |
Page 397 |
Page 398 |
Page 399 |
Page 400 |
Page 401 |
Page 402 |
Page 403 |
Page 404 |
Page 405 |
Page 406 |
Page 407 |
Page 408 |
Page 409 |
Page 410 |
Page 411 |
Page 412 |
Page 413 |
Page 414 |
Page 415 |
Page 416 |
Page 417 |
Page 418 |
Page 419 |
Page 420 |
Page 421 |
Page 422 |
Page 423 |
Page 424 |
Page 425 |
Page 426 |
Page 427 |
Page 428 |
Page 429 |
Page 430 |
Page 431 |
Page 432 |
Page 433 |
Page 434 |
Page 435 |
Page 436 |
Page 437 |
Page 438 |
Page 439 |
Page 440 |
Page 441 |
Page 442 |
Page 443 |
Page 444 |
Page 445 |
Page 446 |
Page 447 |
Page 448 |
Page 449 |
Page 450 |
Page 451 |
Page 452 |
Page 453 |
Page 454 |
Page 455 |
Page 456 |
Page 457 |
Page 458 |
Page 459 |
Page 460 |
Page 461 |
Page 462 |
Page 463 |
Page 464 |
Page 465 |
Page 466 |
Page 467 |
Page 468 |
Page 469 |
Page 470 |
Page 471 |
Page 472 |
Page 473 |
Page 474 |
Page 475 |
Page 476 |
Page 477 |
Page 478 |
Page 479 |
Page 480 |
Page 481 |
Page 482 |
Page 483 |
Page 484 |
Page 485 |
Page 486 |
Page 487 |
Page 488 |
Page 489 |
Page 490 |
Page 491 |
Page 492 |
Page 493 |
Page 494 |
Page 495 |
Page 496 |
Page 497 |
Page 498 |
Page 499 |
Page 500 |
Page 501 |
Page 502 |
Page 503 |
Page 504 |
Page 505 |
Page 506 |
Page 507 |
Page 508 |
Page 509 |
Page 510 |
Page 511 |
Page 512 |
Page 513 |
Page 514 |
Page 515 |
Page 516 |
Page 517 |
Page 518 |
Page 519 |
Page 520 |
Page 521 |
Page 522 |
Page 523 |
Page 524 |
Page 525 |
Page 526 |
Page 527 |
Page 528 |
Page 529 |
Page 530 |
Page 531 |
Page 532 |
Page 533 |
Page 534 |
Page 535 |
Page 536 |
Page 537 |
Page 538 |
Page 539 |
Page 540 |
Page 541 |
Page 542 |
Page 543 |
Page 544 |
Page 545 |
Page 546 |
Page 547 |
Page 548 |
Page 549 |
Page 550 |
Page 551 |
Page 552 |
Page 553 |
Page 554 |
Page 555 |
Page 556 |
Page 557 |
Page 558 |
Page 559 |
Page 560 |
Page 561 |
Page 562 |
Page 563 |
Page 564 |
Page 565 |
Page 566 |
Page 567 |
Page 568 |
Page 569 |
Page 570 |
Page 571 |
Page 572 |
Page 573 |
Page 574 |
Page 575 |
Page 576 |
Page 577 |
Page 578 |
Page 579 |
Page 580 |
Page 581 |
Page 582 |
Page 583 |
Page 584 |
Page 585 |
Page 586 |
Page 587 |
Page 588 |
Page 589 |
Page 590 |
Page 591 |
Page 592 |
Page 593 |
Page 594 |
Page 595 |
Page 596 |
Page 597 |
Page 598 |
Page 599 |
Page 600 |
Page 601 |
Page 602 |
Page 603 |
Page 604 |
Page 605 |
Page 606 |
Page 607 |
Page 608 |
Page 609 |
Page 610 |
Page 611 |
Page 612 |
Page 613