3. Expand each of the following, simplifying if necessary.
(i) 8s × 2s (ii) 5mn × (− 3 m2 (iii) 4 x2
(iv) 7pn × (− 4 p2 (v) ( 3e)(e2
)( 2d)
(vi) ( 4ab)( −6 a2 (vii) ( 2a2
b) ) (−3ay) ( −5ab ) (viii) (mn)(− 4nm)( −5mn)
4. Expand each of the following, simplifying if necessary.
(i) 12x ÷ 3 (ii) 21 x3
(vi) 8 x2 ÷ 3 x2
(iii) 14d ÷ 7 (iv) 8 x4 (v) 14 x6
____ 2 x2
÷ 4 x2
___ 4x
(vii) − 10a (viii) − 6x
___ − 3
(ix) 32ab2 (x) − 144d
_____ − 4ab
______ − 6 c3
d2
____ 2a
n) × 5x × 2x n)
1. The area of a rectangle is found by multiplying the length by the width. For the following rectangles, fi nd a simplifi ed expression for the area.
(i) 4x
(ii) 10xy (iii) 6mn
Length Width 4y 8x
5mn
2. The perimeter of a rectangle is found by multiplying the length by 2 and adding the result to the width multiplied by 2. This can be expressed as: P erimeter = (2l + 2w)
For the following rectangles, fi nd a simplifi ed expression for the perimeter.
(i) 3a (ii) 6m (iii) 4xy
Length (l) Width (w) 3a
4 m2 10xy
5. Expand each of the following, simplifying if necessary.
(i) (2 __
(ii) (1 __
3 w)(1 __
(iii) (m2
)(− 3 __
(iv) ( 9 __
(v) (2 __
2 )
3 x)(− 2 __
13 d)( 1 __
(vi) ( 3 __
7 x)
3 x)(− 3 __
5 m) 3 a) 8 y)
11 m2)(− 2 __
3 n) 8B Taking it FURTHER
Section A Introducing concepts and building skills