search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 269–278, 2017 doi:10.1017/S1431927617000320


© MICROSCOPY SOCIETY OF AMERICA 2017


Detecting Clusters in Atom Probe Data with Gaussian Mixture Models


Jennifer Zelenty,1,* Andrew Dahl,2 Jonathan Hyde,3 George D. W. Smith,1 and Michael P. Moody1


1Department of Materials, University of Oxford, Oxford OX1 3PH, UK 2Department of Statistics, University of Oxford, Oxford OX1 3LB, UK 3National Nuclear Laboratory, Culham Science Centre, Abingdon OX14 3DB, UK


Abstract: Accurately identifying and extracting clusters from atom probe tomography (APT) reconstructions is extremely challenging, yet critical to many applications. Currently, the most prevalent approach to detect clusters is the maximum separation method, a heuristic that relies heavily upon parameters manually chosen by the user. In this work, a new clustering algorithm, Gaussian mixture model Expectation Maximization Algorithm (GEMA),


was developed. GEMA utilizes a Gaussian mixture model to probabilistically distinguish clusters from random fluctuations in the matrix. This machine learning approach maximizes the data likelihood via expectation maximization: given atomic positions, the algorithm learns the position, size, and width of each cluster. A key advantage of GEMA is that atoms are probabilistically assigned to clusters, thus reflecting scientifically meaningful uncertainty regarding atoms located near precipitate/matrix interfaces. GEMA outperforms the maximum separation method in cluster detection accuracy when applied to several realistically simulated data sets. Lastly, GEMA was successfully applied to real APT data.


Key words: atom probe tomography, cluster identification, Gaussian mixture models, expectation maximization, machine learning


INTRODUCTION


Atom probe tomography (APT), with its superior combi- nation of chemical and sub-nanometer three dimensional (3D) spatial resolution, is an excellent tool with which to detect nanoscale precipitates (Gault et al., 2012). In many cases, particularly in the earliest stages of cluster formation, APT can identify features beneath the limits of most other conventional microscopy techniques. However, there exists a caveat: the user must independently extract the precipitates from the APT data using a cluster search algorithm. As the need to characterize clusters extends across many materials and users, a versatile and reliable cluster search algorithm is essential. The analysis of nanoscale precipitates within data


provided by APT is critical to many engineering applications in materials science. The nucleation and growth of Ni–Mn–Si precipitates can cause hardening and, ultimately, embrittle- ment, in reactor pressure vessel (RPV) steels (Styman et al., 2012;Wells et al., 2014). In addition, the mechanical proper- ties of Ni-based superalloys, which are used in jet engines and wind turbines, rely crucially on various solute additions and the resulting precipitation (Pollock & Tin, 2006). Further- more, key research regarding oxide dispersion strengthened (ODS) steels focuses on the chemical characterization and distribution of oxide nanoparticles; although these highly stable particles are responsible for many of the exceptional mechanical properties of ODS steels, they are not yet fully


*Corresponding author. jzelenty@gmail.com Received July 9, 2016; accepted February 8, 2017


characterized (Hirata et al., 2011; London et al., 2015).Hence, the need for accurate cluster identification and extraction of cluster information from APT reconstructions is imperative. Numerous algorithms have been developed to identify


individual clusters within APT data including the maximum separation method (Hyde & English, 2000), the core-linkage algorithm (Stephenson et al., 2007), and Voronoi parti- tioning (Felfer et al., 2015). Currently, the most prevalent approach used to detect clusters is the maximum separation method. This heuristic relies heavily upon four parameters, each manually chosen by the user: Dmax, the maximum distance separating two neighbouring solute atoms within the same cluster; Nmin, the minimum number of atoms a cluster must contain to be considered a genuine cluster; and L and E, which are metrics related to the incorporation of solvent atoms within clusters. Although there have been commendable efforts to provide guidelines for parameter selection and sensitivity analyses, the process still remains largely arbitrary and incon- sistent (Hyde et al., 2011; Styman et al., 2013; Jägle et al., 2014). This raises the fundamental issue of scientific


objectivity. Experiments should be reproducible, and results should be independent of the researcher. The application of current APT data clustering algorithms requires selection of numerous user-defined parameters that unavoidably intro- duce subjective variation into the analysis. The outcome is a chronic lack of comparability between quantitative data obtained by different users. This represents a significant issue for APT-based research and becomes ever more apparent as the number of researchers in the field increases. Therefore, a more objective method for cluster analysis is essential.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284