search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
True Atomic-Scale Imaging in Three Dimensions 217


Figure 8. a: Field-ion microscopy (FIM) image of undamaged tungsten specimen. b–d: Selected cropped FIM micro- graphs demonstrating increasing lattice radiation damage in tungsten samples self-implanted with increasing displace- ments per atom (dpa), implantation energies of 0.15MeV in (b), and 2MeV in (c) and (d) (Dagan et al., 2015).


The importance of the ability to observe directly and


locate subnanometer diameter boron clusters within the lattice and its defects cannot be overstated, as their study is the key to understanding the atomic-scale processes deter- mining the implantation of dopants into nanoscale devices. As stated above, the incorporation of dopants into nanoscale devices is crucial to their performance. As dopants are typi- cally introduced into the device geometry utilizing an ion implantation step and a subsequent annealing step, a fun- damental understanding of the formation and dissolution of defects and clusters is crucial for the optimization of nanoscale devices.


Automated Method


To make full use of FIM’s superior resolving power, an automated procedure for the “atom-by-atom” 3D recon- structions of FIM data were developed. As demonstrated in the pioneering research of Seidman et al. (e.g., Scanlan et al., 1974; Seidman et al., 1981), FIM can image individual 3D point defects, such as self-interstitials and vacancies, which they accomplished using the technology then available to them. In particular, accurate quantitative characterization of such features was achieved in the region adjacent to high Miller index poles, where the spatial resolution is sufficient to observe every individual atom on a plane. This capability is of great importance in studies related to the effects of radiation damage on structural materials for nuclear reac- tors. The reliable identification and mapping of the early stages of radiation damage can yield important insights into the mechanical properties of a nuclear reactor’s components. Figure 8 demonstrates evolving levels of lattice radiation damage in ion-implanted tungsten, a leading candidate material for fusion reactor components, as observed by FIM. Although the damage evolution with increasing implanta- tion dose is very clearly observed by FIM, the corresponding APT 3D reconstructions exhibited little to no difference in the distribution of tungsten atoms (Dagan et al., 2015). To detect, automatically, such fine features, a dedicated


3D reconstruction procedure was developed and adapted to the atomic resolution of the technique. The new automated approach transforms what would be an overwhelming amount of FIM micrographs, if assessed manually, recorded


within a controlled evaporation experiment, into a 3D atomic resolution reconstruction of the analyzed volume. The technique automatically identifies the atoms in the FIM image, and tracks the presence of each atomacross all images


from the time it first appears at the surface until it is finally field-evaporated. The characteristic atomic layer-by-layer imaging and


evaporation sequence is employed for the automation of the 3D reconstruction and is seen in Figure 9a, for a (222) plane in tungsten. As atoms at kink sites have higher electric fields they are preferentially imaged with respect to atoms in the center of an atomic plane. It is only after their field eva- poration that atoms from the center of an atomic plane are imaged because the local electric field conditions change. This repeating sequence is employed to estimate auto- matically the depth coordinate in a specific FIM image, in terms of interplanar spacing, as integrated intensity from the center of the pole decreases every time the last atoms of the plane are removed, as seen in Figure 9b. The dynamic nature of the FIM experiment poses sig-


nificant challenges to automated 3D reconstruction. As not all atoms on the same crystallographic plane are imaged simultaneously, a cross-image analysis is necessary to place them on the correct planes relative to one another. It is also the reason why the detection of crystal defects requires the 3D reconstruction of all atoms in the lattice, whereas a simpler 2D analysis on a representative image will not suffice. In 2D, a missing atom can be simply an atom evaporating prematurely. Moreover, the presence of defects will often break the familiar repeating sequence of field evaporation, necessitating the need for an overall recon- struction method (Dagan et al., 2016). Other challenges arise from the constantly changing


electric field conditions. With every single field-evaporation event the local electric field associated with individual atoms is redistributed above the remaining neighboring atoms, causing changes in the imaging intensities, spatial coordi- nates, and the observed diameter of the respective atoms from image to image. All these effects necessitate an adjus- table automated algorithm, which is able to track the same atom in each different image, detect its field-evaporation and the emergence of new atoms in its place nearby, and assign it to its correct crystallographic layer number.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284