search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
True Atomic-Scale Imaging in Three Dimensions 213


FIM sequences. In a first approach, the lateral scale can be approximately estimated. Using Dreschler’s method (Drechsler &Wolf, 1958) or employing the relationship V = kFFR, the curvature radius of curvature, R, of a tip can be deduced, with V the DC voltage applied, F, the effective evaporation electric field of the material studied and kF the electrostatic compression factor (Gault et al., 2012; Larson et al., 2013; Lefebvre-Ulrikson et al., 2016). The depth scale is readily determined by counting the number of evaporated atomic planes. 3D images are composed of an assembly of lentil-shaped 3D “spots,” with a 0.3nm lateral dimension and 0.05nm in depth. Close to high Miller index pole directions, where the lateral distance between atoms is sufficient, each atom can be spatially resolved. Atomic resolution is thus achieved in 3D in these {hkl} planes. This simple method is not very accurate as the tip’s


surface is highly curved, and the magnification is not linear over the surface. Nevertheless, image formation in FIM is described by simple projection laws (Vurpillot et al., 2007; Gault et al., 2012; Larson et al., 2013; Miller & Forbes, 2014; Lefebvre-Ulrikson et al., 2016). Using these projection rela- tionships, a more refined 3D FIM reconstruction protocol has been developed. The assumptions employed are similar to those of the standard APT reconstruction procedure (Bas et al., 1995). The 3D FIM protocol consists of a two-step methodology. The first step consists of calculating the lateral transformation appropriate for the recorded sequence. This transformation is obtained from the standard relationship,


L = kθθ, where L is the distance to the center of the image and θ the angle from the tip’s long axis assuming a hemi-


spherical apex. The quantity kθ is taken to be a constant and can be separately calibrated (Gault et al., 2012). Considering a given point P at the tip’s surface and assuming the center of the image is also the tip’s center, the corresponding angle θ is deduced from its position P(x,y,z) using the geometric formula


θ = a cos


px2 + y2 R


ffiffiffiffiffiffiffiffiffiffiffiffiffi ! : (1) From this angle, the corresponding position on the


detector is directly found. Note that different types of pro- jection laws may be used to improve the accuracy of the lateral reconstruction as this formula may present some limitations for wide angles (Brandon, 1964). As a result, an (x,y) regular map of intensities on the tip’s surface can be calculated for each successive FIM image. The second step consists of calculating the z-depth coordinate of the (x,y) positions previously defined. The corresponding z- coordinate is the sum of two contributions,ΔzR andΔze. The hemispherical shape of the tip’s apex introduces a depth shift, ΔzR, as a function of the distance to an image’s center:


ΔzR =R 1 - cos θ ðÞ: ðÞ (2) Moreover, as the tip is field-evaporated at a constant


evaporation rate when recording the FIM movie, Δze is deduced from the number of FIM images and from the total


Figure 3. Corrected volume reconstructed from the set of field- ion microscopy images presented in Figure 2, with the reconstruc- tion algorithm described in the text. The image is a slice crossing the precipitate observed in Figure 2g. Note the clear presence of the (011) atomic planes parallel to the horizontal axis.


depth (ZT) of the evaporated volume. This depth is calcu- lated from the number of evaporated planes:


Δze = ZT NT


´ i; (3)


where NT is the total number of images and i the index of an FIM image. This algorithm, applied to the images of Figure 2, produces a corrected volume with flat (011) atomic planes, and the correct morphology of the carbide is displayed in Figure 3. Compared with individual FIM images, more informa-


tion is contained in the 3D reconstructions. Indeed, the tomogram is the result of the dynamic field-evaporation process of a specimen, whereas classical FIM images are generally acquired in an essentially static state (i.e., using a low field-evaporation rate). The contrast effects obtained from the 3D exploration of the volume are generally easier to interpret, as sections or slices may be taken using any direction into the material. Improvements of the algorithm, using a variable radius of curvature in parallel with the number of images are being concurrently developed (Rademacher et al., 2009; Semboshi et al., 2009). The ability to provide a 3D image of precipitates, when a high contrast difference is found between precipitates and matrix, was demonstrated for small carbide precipitates in steels (Akré et al., 2009), in core–shell precipitates in Al–Sc–Zr alloys (Van Tendeloo et al., 2012), and in Cu–Ti or Cu–Fe alloys (Rademacher et al., 2009; Semboshi et al., 2009). It was also demonstrated that even small precipitates with small differ- ences in contrast compared with the matrix may be readily reconstructed in 3D. The precipitate size distributions and 3D morphologies of precipitates are determined in a straightforward manner without the necessity for complex interpretations (Akré et al., 2009; Rademacher et al., 2009; Semboshi et al., 2009; Cazottes et al., 2012). Image distor- tions are generally less severe than in APT reconstructions. The extent of local magnification effects and local trajectory overlaps are much smaller because the image gas is ionized from the static positions of atoms at the surface of a nanotip at a distance of a few tenths of a nanometer (Gomer, 1961). The ability to generate volumes with reduced deforma-


tion is essential for measuring accurate angles and morphologies of nanostructures embedded in 3D FIM tomograms. Another set of images was recorded at a different depth from the same model alloy sample (Fig. 4). The bright spots correspond to solute atoms in a precipitate


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284