search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
322 David R. Diercks et al.


surface or near-surface site-specific regions for FIB preparation include discontinuous thin films and interfaces, device stacks, grain boundaries, phase boundaries, and defects. This can also be applied to nanoparticles or nanowires dispersed on a surface. Although there are advantages of in situ EBID for


depositing the protective layer, the most commonly used methyl cyclopentadienyl platinum trimethyl (MeCpPtMe3) source may not be optimal in many instances. EBID and ion beam-induced deposition using this source results in Pt nanoparticles within a carbon and oxygen matrix (Rotkina et al., 2005; Botman et al., 2006; Gerstl et al., 2006). Such a structure does not always achieve great adhesion, which is especially problematic for APT analysis where mechanically weak interfaces are prone to delaminate or fracture under the high applied fields.An additional challenge forAPT is that this deposited material field evaporates unevenly, likely due to it being a nanocomposite with different evaporation field char- acteristics for the two phases. Furthermore, for somematerials


of interest this deposition has an incompatible evaporation field, mills very differently than the underlying material, and/ or produces interfering peaks in the mass spectrum. If there are multiple possible capping materials readily


available, then researchers can better optimize their choice of protective layer based on the previously mentioned criteria, such as evaporation field matching, mass interference avoidance, and adhesion improvement. This will in turn provide greater flexibility in trying to analyze near-surface features by APT. Therefore, several commercially available EBID precursors were evaluated for use in the FIB-based fabrication and subsequent APT analysis of silicon specimens. Silicon was chosen both because of its ease of APT analysis and its moderate evaporation field.


MATERIALS ANDMETHODS


Depositions of MeCpPtMe3, palladium hexa- fluoroacetylacetonate, dimethyl-gold-acetylacetonate [Me2Au (acac)], Me2Au(acac) plus flowing O2, dicobalt octacarbonyl, and diiron nonacarbonyl were made on top of reactive-ion- etched tapered silicon posts each having a 2 µmdiameter flat top (Thompson et al., 2005). For simplicity, these depositions will subsequently be called Pt, Pd, Au, Au+O2,Co, andFe, respectively. All depositions were made in either an FEIHelios 650 or FEI Helios 600 (FEI Co., Eindhoven, Netherlands) instrument using a focused electron beam operating at 5 kV and 6 nA. Some details regarding deposition times and thick- nesses are shown in Table 1. It is noted that growth rates of the depositions on the


tops of these posts is significantly slower than what has been observed for flat surfaces. This is probably due to different surface diffusion and retention behavior of the precursor molecules for the two cases resulting from the height differences and precursor shading effects at the Si posts. The more typical scenario for lift-out APT specimen pre- paration is a flat surface, and, therefore, the deposition yield obtained here is likely not indicative of the times required for achieving a given thickness for that geometry. For this


Table 1. Some Deposition Times and Thicknesses.


Depositions Deposition Time (min) Deposition Thickness (µm) Au


Au+O2 Co Fe Pd Pt


60 80 40 22 80 8


0.5 0.2 3.5


0.24 3.1 1.1


investigation, the deposition directly onto preformed posts was done for ease and uniformity of specimens. It is not anticipated that this geometry significantly altered the results other than the deposition rate. Previouswork on EBIDgrowth of freestanding nanowires has indicated a similar composi- tion, morphology, and structure as EBID films grown on flat substrates from the same precursor (Frabboni et al., 2006). After making the depositions and before subsequent


processing, energy dispersive X-ray spectroscopy (EDX) was performed on each of the depositions using either an EDAX Genesis or EDAX Octane Super detector (EDAX Inc., Mahwah, NJ, USA). These analyses were performed for determination of composition. In preparation for APT analysis, these posts were shar-


pened by annular milling patterns with a 30 kV Ga ion beam to dimensions appropriate for APT specimens (radius of curvature≤70 nm) (Larson et al., 1998).A2kV Ga ion beam was then used to remove approximately an additional 50nm of material to eliminate the region damaged by the 30kV beam, as is now common practice in APT specimen pre- paration (Thompson et al., 2007). For all specimens, this left at least 100nm of deposited material on top of the silicon post, except for the Au+O2 where only 70nm was left due to the smaller initial thickness of the deposition. APT data collection was performed using a Cameca


LEAP4000XSi system(Cameca,Madison,WI, USA) at a base temperature of 49.7K, a detection rate of one event per 200 pulses (0.5%), and a laser pulse frequency of 250 kHz. Over a series of analyses, various laser energies, resulting in a range of applied biases, were used to explore the evaporation behavior of each deposition. Attempts were also made to perform analyses which transitioned from the deposition into the underlying silicon post. The particulars of these are discussed in the results subsections for each deposition. Analysis of the APT data was done using Cameca’s IVAS 3.6.6 software. Reconstructions were generated from SEMimages of the tips using the tip profile method.


RESULTS AND DISCUSSION


Compositional Measurement The compositions of the EBID layers were measured both by EDX and APT analyses. These are compared in Table 2. The APT uncertainties shown in the table are based on standard deviations of values from multiple analyses. Some


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284