search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
364 Masoud Rashidi et al.


Figure 5. The composition of the core and the shells of the precipitates in the trial steel aged for (a) 24, (b) 1,005, (c) 3,000 h at 650°C obtained using the “Fe correction” technique on different iso-concentration surfaces. “Iso x–y” means a shell between the iso-concentration surfaces of Nb+Cr+N >x% and Nb+Cr+N >y% was analyzed. The non-visible error bars (1 SD) are smaller than the data point symbols.


By subtracting the obtained composition of different iso- surfaces, one can measure the composition of different layers of the precipitate. Figure 5 shows the composition of the precipitates layer by layer in the specimens aged for 24, 1,005, and 3,000 h at 650°C. In the specimen aged for 24 h, the Cr concentration in the core of theMXprecipitate is around 20 at%, and in the shell of the precipitate reaches 30 at% (Fig. 5a). The in-diffusion of Cr continues during thermal ageing. Figure 5b shows the composition of a precipitate after 1,005 h ageing at 650°C. The shell of this precipitate has reached the Z-phase composition, whereas the core of the precipitate requires more Cr for a full transformation to Z-phase. After 3,000 h ageing (Fig. 5c), the MX to Z-phase transformation is completed and the core and the shell of the precipitate have the same composition, showing that Cr diffusion into the MX is now completed and the precipitate has reached its equilibrium composition. The Cr diffusion into the existing MX precipitate has


been reported earlier (Danielsen & Hald, 2009; Cipolla et al., 2010) for V and Ta-based Z-phase precipitates using TEM techniques. The results from the current study show that the Nb-based Z-phase follows the same pathway in its formation. It is worth mentioning that the Z-phase is known to


have a composition of Cr1+xM1 −xN (Ettmayer, 1971). The results from APT also show that some of the Nb is replaced by Cr and from the Cr/Nb ratio x was determined to be 0.08. The N content is believed to be at 33 at%, whereas our APT results show that the N concentration is around 29 at% (and the N+C concentration around 30 at%). This difference in the N content can be presumably attributed to the lower detection efficiency for multiple hits in APT, which can lead to the loss of some of the N ions. As shown in Table 3, Z-phase can dissolve limited


amounts of other alloying elements such as Fe, and W. Even though the amount of C is very small in the trial steel, we can


see that some C can dissolve in Z-phase, see Table 3. Trace amounts of V and Ta existed in the trial steel as impurities. The concentration of these elements in the matrix was below the detection limit, so apparently all Ta and V are incorpo- rated in Z-phase. It is worth mentioning that the Ta and V concentrations in the core and the shell of the precipitates were almost constant.


CONCLUSION


This study provides a routine to analyze the chemical com- position of an entire precipitate rather than the core of the precipitate using high iso-concentration values. This tech- nique involves the following three steps; the precipitate is selected by using low iso-concentration values in a way that most ions belonging to the precipitate are collected. The gathered data gives the composition of the precipitate plus a contribution from matrix, due to the local magnification effect. The built-in peak deconvolution tool in IVASTM solves possible peak overlaps in the mass spectra. The matrix contribution can be deduced based on an element, which only exists in the matrix (in this case Co or Fe). The remaining ions belong to the precipitate. It was also shown that by comparing ions within different


iso-concentration surfaces, the composition of the core and the shell of a precipitate could be measured accurately. This technique was employed to analyze precipitates


with a high evaporation field in a Z-phase strengthened 12% Cr steel. It was shown that Z-phase forms by diffusion of Cr into the MX precipitates. The equilibrium composition of Z-phase corresponds to Cr1+xNb1 −xN with x =0.08.


ACKNOWLEDGMENTS


Swedish Energy Agency (contract number 31139-1), Swed- ish research programKME(contract numbers: 510 and 710),


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284