348 Zemin Wang et al.
temperature is expected to give differences in the interface compositions, as the schematics display in Figure 11. The structure of CRPs would probably transform from BCC to the intermediate 9R, 3 R, or FCC (Monzen et al., 2000), which requires further investigation with a combination of APT and high-resolution TEM techniques.
CONCLUSIONS
The APT method was utilized to investigate CRPs in 17-4 PH SS tempering at different temperatures for 4 h. The important conclusions concerning the chemistry and the strengthening effects of CRPs are portrayed as the following:
1. Only Cu is clustering in the sample tempered at 420°C, whereas Ni and Mn are homogenously distributed in the matrix. In the sample tempered at 450°C, Ni and Mn segregate to the Cu-rich clusters, wherein they are homogenously distributed. This corresponds to the strongest hardening effect, with maximum number density and a moderate radius of the precipitates.
2. The elements Ni, Al, and Mn segregated at the CRPs/ matrix interface resulting in a core-shell structure in the samples tempered at temperatures above 510°C. In the sample tempered at 570°C, a Ni(Mn, Al) phase encapsu- lating the core of Cu precipitates was formed, which was proved to be beneficial for the precipitate coarsening, due to the strain energy reduction and to the larger negative mixing enthalpy with Mn and Ni. Also, Si was obviously enriched in Ni(Mn, Al) phase.
ACKNOWLEDGMENTS
This work was supported by the National Key Research and Development Program of China (No. 2016YFB0700401), NSAF (No.U1530115), Steel Joint Funds of the National Natural Science Foundation of China (No.U1460103) and State Key Lab of Advanced Metals and Materials (No. 2014-Z08).
REFERENCES
DANOIX,F.&AUGER, P. (2000). Atom probe studies of the Fe–Cr system and stainless steels aged at intermediate temperature: A review. Mater Charact 44(1), 177–201.
HSIAO, C.N., CHIOU, C.S. & YONG, J.R. (2002). Aging reactions in a 17-4 PH stainless steel. Mater Chem Phys 74(2), 132–142.
ISHEIM, D., GAGLIANO, M.S., FINE, M.E. & SEIDMAN, D.N. (2006). Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater 54(3), 841–849.
JIAO, Z.B., LUAN, J.H.,MILLER, M.K. & LIU, C.T. (2015). Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater 97(4), 58–67.
KOLLI, R.P., MAO,Z.&SEIDMAN, D.N. (2007). Identification of a Ni0.5(Al0.5-xMnx) B2phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl Phys Lett 91, 2073–2088.
KOLLI, R.P. & SEIDMAN, D.N. (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu- based steel. Acta Mater 56(9), 2073–2088.
KOLLI, R.P & SEIDMAN, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13, 272–284.
MILLER, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.
MURAYAMA, M., KATAYAMA,Y.&HONO, K. (1999). Microstructural evolution in a 17-4 PH stainless steel after aging at 400°C. Metall Mater Trans A 30(2), 345–353.
MARUYAMA, N., SUGIYAMA, M., HARA,T.&TAMEHIRO, H. (1999). Precipitates and phase transformation of copper particles in low alloy ferritic and martensitic steels. Mater Trans JimA40,268–277.
MORLEY, A., SHA, G., HIROSAWA, S., CEREZO,A.& SMITH, G.D.W. (2009). Determining the composition of small features in atom probe: BCC Cu-rich precipitates in an Fe-rich matrix. Ultramicroscopy 109, 535–540.
MIRZADEH,H.&NAJAFIZADEH, A. (2009). Aging kinetics of 17-4 PH stainless steel. Mater Chem Phys 116(1), 119–124.
MILLER, M.K., SOKOLOV, M.A., NANSTAD, R.K & RUSSELL, K.F. (2006). APT characterization of high nickle RPV steels. J Nucl Mater 351(1–3), 187–196.
MONZEN,R., JENKINS,M.&SUTTON, A.P. (2000). The BCC-to-9R mar- tensitic transformation of Cu precipitates and the relation process of the elastic strains in an Fe-Cu alloy. PhilosMag A 80,711–723.
OTHEN, P.J., JENKINS, M.L., SMITH, G.D.W. & PHYTHIAN, W.J. (1991). Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni. Philos Mag Lett A 64(6), 383–391.
OSAMURA, K., OKUDA, H., ASOANO, K., FURUSAKA, M., KISHIDA, K., KUROSAWA,F.&UEMORI, R. (1994). SANS study of phase decomposition in Fe-Cu alloy with Ni and Mn addition. ISIJ Int 34(4), 346–354.
RACK, H.J. & KALISH, D. (1974). The strength, fracture toughness, and low cycle fatigue behavior of 17-4PH stainless steel. Metall Trans 5(7), 1595–1605.
STEPHENSON, L.T., MOODY, M.P., LIDDICOAT, P.V. & RINGER, S.P. (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13(6), 448–463.
STYMAN, P.D., HYDE, J.M., WILFORD, K., PARFITT, D., RIDDLE,N &SMITH, G.D.W. (2015). Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds. Ultramicroscopy 159,292–298.
TAKEUCHI,A.& INOUE, A. (2005). Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12), 2817–2829.
VISWANATHAN, U.K., BANERJEE,S.&KRISHNAN, R. (1988). Effects of aging on the microstructure of 17-4 PH stainless steel. Mater Sci Eng A 104(6), 181–189.
VISWANATHAN, U.K., NAYAR, P.K.K. & KRISHNAN, R. (1989). Kinetics of precipitation in 17-4PH stainless steel. Mater Sci Technol 5(4), 346–349.
WANG, J. (2007). Study on the properties of a 17-4 PH stainless steel using in the nuclear reactor. PhD Thesis, Sichuan University, Chengdu, China.
WANG, J., ZOU, H.,WU, X.Y, LI,C.QIU, S.Y.&SHEN, B.L. (2005). The effect of long-term isothermal aging on dynamic fracture toughness of type 17–4 PH SS at 350°C. Mater Trans. 46(4), 846–851.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284