search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 376–384, 2017 doi:10.1017/S1431927617000162


© MICROSCOPY SOCIETY OF AMERICA 2017


On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel SteelWeld


Kristina Lindgren,1,* Krystyna Stiller,1 Pål Efsing,2 and Mattias Thuvander1


1Department of Physics, Chalmers University of Technology, Göteborg SE 412 96, Sweden 2Vattenfall Ringhals AB, Väröbacka SE 430 22, Sweden


Abstract: Radiation induced clustering affects the mechanical properties, that is the ductile to brittle transition temperature (DBTT), of reactor pressure vessel (RPV) steel of nuclear power plants. The combination of low Cu and high Ni used in some RPV welds is known to further enhance the DBTT shift during long time operation. In this study, RPV weld samples containing 0.04 at% Cu and 1.6 at% Ni were irradiated to 2.0 and 6.4×1023 n/m2 in the Halden test reactor. Atom probe tomography (APT) was applied to study clustering of Ni, Mn, Si, and Cu. As the clusters are in the nanometer-range, APT is a very suitable technique for this type of study. From APT analyses information about size distribution, number density, and composition of the clusters can be obtained. However, the quantification of these attributes is not trivial. The maximum separation method (MSM) has been used to characterize the clusters and a detailed study about the influence of the choice ofMSMcluster parameters, primarily on the cluster number density, has been undertaken.


Key words: reactor pressure vessel steel, clustering, atom probe tomography, irradiation damage, maximum separation method


INTRODUCTION


The reactor pressure vessel (RPV) of nuclear power plants is subjected to both heat and neutron irradiation, leading to gradual changes in properties, a phenomenon known as aging. The effects of the aging become important after long operating times as the RPV welds become more and more embrittled. The embrittlement is connected to the formation of various features on the nanometer scale, hindering dislocation glide when the material is subjected to stress (Odette & Lucas, 1998). Nanometer-sized clusters contain- ing Cu, Ni, Mn, and Si form, depending on the composition of the steel. For low Cu high Ni steels, clusters with small amounts of Cu, or even without Cu, form (Miller et al., 2009, 2013; Meslin et al., 2010b). The small scale of these features makes them suitable for atom probe tomography (APT) studies. This allows for quantitative measurements of important parameters, like number density, size distribution, and composition of the clusters that in turn influence the mechanical properties of the steel. Some different techniques to identify clusters using APT


have been developed during the last two decades, and a review of methods can be found in reference (Marquis & Hyde, 2010). The maximum separation method (MSM) is one method that identifies clusters based on the distances between solute atoms (Hyde & English, 2000; Heinrich et al., 2003; Vaumousse et al., 2003). The parameters might need to be chosen for each system, dependent on the cluster size and composition, and the matrix composition. The detection


*Corresponding author. kristina.lindgren@chalmers.se Received June 30, 2016; accepted January 14, 2017


efficiency and background noise might also affect the choice of parameters (Gault et al., 2012). The MSM is a widely used method for cluster identification due to it being fast and easy to use and that it is implemented in the most commonly used software. When applying the MSM, five parameters usually need


to be considered. The maximum distance between two solute atoms considered to form a cluster is denoted dmax. The parameter Nmin is the smallest number of solute atoms regarded to be a cluster and not random fluctuations. The order, N, denotes how many solute atoms that need to be located within the distance dmax. Most commonly, N = 1is used, that is only the nearest neighboring atom distance is taken into account. Higher orders can give more robust results, avoiding effects from small density fluctuations, but might not be suitable for small clusters (Stephenson et al., 2007). When measuring the composition of the cluster, the envelope distance L is the distance around the solute atoms defining which nonsolute atoms that are to be included in the cluster. Finally, E is the erosion distance; it removes the thin shell of atoms outside the cluster that would otherwise be counted as belonging to the cluster due to the introduction of L. As a consequence, the measured number density of clusters is only influenced by the choice of dmax,Nmin, and N, whereas the choice of E and L influences size and composi- tion of the clusters. The choice of the value for the parameter dmax is a trade-


off (Vaumousse et al., 2003). If dmax is too large, features that might be random matrix fluctuations are considered to be clusters, which increases the measured cluster number density. However, a too small value of dmax will not be able to identify all clusters.Nmin is also vital and the appropriate value


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284