search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Effect of Cu on Nanoscale Precipitation Evolution 357


Table 4. The Matrix Composition of Fe–NiAl and Fe–NiAl–Cu Alloys, Which is Determined From the Plateau Section of the Proxigram Concentration Profile Outside the NiAl Precipitates for 4, 32, and 128 h.


4 h


at% Ni


Al


Cu Fe


Fe–NiAl 3.7±0.65


3.1±0.57 —


93.2±0.89


Fe–NiAl–Cu 2.6±0.02


2.1±0.04 0.4±0.01 94.5±0.05


Fe–NiAl 2.7±0.15


2.1±0.26 —


95.0±0.19 32 h


Fe–NiAl–Cu 2.2±0.09


1.2±0.08 0.3±0.05 96.1±0.2


Fe–NiAl 2.5±0.07


1.4±0.06 —


96.0±0.2 The uncertainty for each concentration c is (c(1−c)/N)0.5, where N is the total number of atoms used for calculating the concentration value.


perfect core–shell structures. This is attributed to that after longer aging, the Cu precipitates begin to transform to 9R and face-centered cubic (fcc) Cu (Othen et al., 1994). This trans- formation is accompanied by a change in morphology from equiaxed to elongated. In order to minimize the total interfacial energy, the NiAl precipitates nucleate with a spheroidal morphology, rather than with a shell covering the entire Cu precipitate in a core–shell structure, which would involve a higher interfacial area to volume ratio (Kapoor et al., 2014).


Effect of Cu on Mechanical Properties


With the addition of Cu, the microhardness of the Fe–NiAl– Cu alloy shows significant differences compared with that of the Fe–NiAl alloy, as shown in Figure 1. During the early aging period, the Fe–NiAl alloy exhibits a slight decrease in hardness, which is due to the partial removal of dislocations and defects. However, the hardness of the Fe–NiAl–Cu alloy increases from ~218 to ~288HV after the first 0.5-h-aging period, indicating that the hardening effect of the Ni, Al, and Cu clusters is much larger than the softening due to removal of dislocations and defects. Then with the co-precipitation of NiAl particles and Cu-rich particles, the Fe–NiAl–Cu alloy reaches higher peak hardness than the Fe–NiAl alloy. With increasing aging time, the peak hardness of the Fe–NiAl–Cu alloy remains for a period of time, which is attributed to the difference in nucleation and growth rates of Cu-rich nano- particles and NiAl nanoparticles (Gagliano & Fine, 2004), whereas the hardness of the Fe–NiAl alloy decreases quickly after reaching the peak value. The decrease in hardness of both alloys at the late stage of aging is due to the coarsening of precipitates. The tensile properties reveal that Cu additions sig-


nificantly enhance the precipitation strengthening response of Fe–NiAl alloys, which is important for the design of low-cost high-strength alloys. So it is necessary to study the strengthening mechanism of the nanoparticles with and without Cu. Using the experimental data determined by APT at 4 h aging, the strengthening contributions were analyzed. The interaction mechanism between the dislocations


and the particles can be either Orowan looping or particle shearing (Jiao et al., 2015). In the current work, the pre- cipitates are very small, so we expect the precipitation strength to follow the cutting mechanism.


First, when a nanoparticle is sheared by a dislocation,


chemical strength occurs due to the production of new particle–matrix interfacial areas, as given by (Jiao et al., 2015)


Δσchemical = 2M bLT1


2ðÞ γinterfacialb ;


3 2


(4)


where M = 3 is the Taylor factor, b = 0.25 nm the Burgers vector of the matrix, T the line tension of the dislocation, usually taken to be Gb2


calculated by L= 0:866 RN


nanoparticle radius and number density, respectively (Jiao et al., 2015). For the two alloys, γinterfacial and L are the variables of


ðÞ


1 2


Δσchemical. By using the maximum separation method, the R and N of the nanoparticles can be obtained, as shown in Figure 6. The value of N of the Fe–NiAl–Cu alloy is far greater than that of the Fe–NiAl alloy, resulting in a smaller L of the Fe–NiAl–Cu alloy than that of the Fe–NiAl alloy. In addition, the NiAl nanoparticles in the Fe–NiAl alloy are stable B2 structure (Kumar et al., 1992; Bei et al., 2008), which are coherent with the matrix. However, there are NiAl precipitates and Cu precipitates in the Fe–NiAl–Cu alloy As aging continues, the Cu precipitates in the Fe–NiAl–Cu alloy become incoherent with the matrix owing to the structural transformation (Kolli & Seidman, 2008), so γinterfacial of the Fe–NiAl–Cu alloy is larger. In conclusion, the value of Δσchemical of the Fe–NiAl–Cu alloy is expected to be larger than that of the Fe–NiAl alloy. Second, an elastic stress field appears in the matrix


surrounding the nanoparticles, owing to the lattice coher- ency of the ordered nanoparticles with the ferrite matrix and volumetricmisfit strains. The coherency strength is given by (Jiao et al., 2015)


Δσcoherency =4:1MGϵ3 where ϵ=1:5 Δa


3 πR3N, where R and N are the average nanoparticle radius and number density, respectively.


mismatch, with Δa/a as the lattice parameter mismatch at room temperature (Taillard & Pineau, 1982), and ƒ the volume fraction of nanoparticles, which is estimated by f = 4


a 2f 1 2


1 2


R b


; (5)  is the constrained lattice parameter


shear modulus of the matrix and γinterfacial is the interfacial energy. The mean particle spacing, L, in the slip plane is , where R and N are the average


2 (Jiao et al., 2015), G = 80GPa is the 128 h


Fe–NiAl–Cu 2.1±0.04


1.0±0.08 0.2±0.01 96.4±0.09


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284