search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Segregation and N Measurement in Steel by APT 393


0.0 1.0 2.0 3.0 4.0 5.0 6.0


0 5 10 Depth from Surface (nm)


Figure 13. Ga and lattice recoil atom depths (dose-normalized) for 10 keV Ga ions at incident angles of 90° and 15° into Fe-1.4Mn (at.%), calculated with SRIM(Ziegler, 2013).


lattice atoms (i.e., Fe or Mn knocked out of their lattice sites) indicate a depth that is a bit less than the Ga ion implanta- tion, and that it is further for 90° than for the 15° case. However, both of these results are on the same scale as the Ga ion implantation, i.e., affecting only the very near sample surface. Therefore, even when taken only as an approxima- tion of the ion interactions in the sample, the calculations suggest that the majority ofNin the APT needles is not likely to be affected by the collision cascade. The lower N mea- surement in the APT specimens thus cannot be solely attributed to direct interaction with the FIB. An alternative means by which FIB may promote N loss


is by sample heating. Such an increase in temperature at the APT sample tip may facilitate the escape of N from the sample by increasing the kinetics of outward N diffusion. During ion beam bombardment, the majority of the elastic energy interactions (i.e., from the initial kinetic energy of the ion) is converted to heat (Volkert&Minor, 2007). It has been argued that in most samples during milling, specimen heat- ing is largely confined to the collision cascade (Giannuzzi & Stevie, 2005); however, for the case of an APT sample, it is possible that some heating of the bulk needle still occurs. The shape of the APT sample has an extremely high aspect ratio at the tip apex, which yields a high amount of area exposed to the ion beam, per volume. In addition, the fine radius of the tip apex, required for analysis, by necessity limits the cross- sectional area bywhich heat may be removed from the tip via conduction. The possibility of specimen heating during FIB milling is thus a likely cause of some N loss, especially when considering that only modest increases in temperature could dramatically improve the rate of diffusion for the highly mobile N. Future experiments involving the sharpening of Fe–Mn–N martensite APT samples under cryogenic condi- tions would likely prove valuable in confirming or refuting this hypothesis. An additional factor involving the condition of the


specimen, unrelated to preparation, is the possible effect of outward diffusion and loss of N to vacuum during room temperature storage, before analysis. The bulk diffusivity of N in Fe at room temperature is relatively high at


b 1 h Fe


2 at.% N N


10.0 0.0 -10.0 -20.0


Segregation Matrix


-30.0 0 50 100 150 Distance (nm)


Figure 14. N concentrations in Fe-Mn-N martensite, analyzed by VP, measured by 1NN method. a: A comparison with vacuum storage time at room temperature for a FIB-prepared sample. b: A comparison of the same data, expressed by normalized difference in N concentration from an electropolished sample, plotted against analysis depth. The reconstructions for the three datasets are also shownin(b).


~2 ×10−20m2/s. This value puts the ffiffiffiffiffipDt diffusion distance


estimate for a 24-h period (typical for overnight pumping into the APT vacuum) at ~40 nm, which is close to the radius of the sharpened APT needle. This is also likely to be a conservative estimate, as it ignores the potential for fast diffusion of N along defects. To determine possible effects of denitriding to vacuum


at room temperature, a FIB-prepared specimen was analyzed in VP mode after a very quick pumping time in vacuum (~1 h). The same specimen was tested again after being stored for 1 week, then 2 weeks (3 weeks total) at room temperature in the APT vacuum (0.5–1×10−9Torr). The results are shown in Figure 14a, and appear counter-intuitive at first: N concentrations in both the matrix and segregation components measure higher for longer vacuum storage times. However, it must be noted that the specimen is FIB- prepared, and that each successive analysis probes deeper


200 250 300 (Electropolished)


90° Lattice Recoil 15° Lattice Recoil 90° Ga 15° Ga


0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0


15 20 a


4.5 5


3.5 4


2.5 3


1.5 2


0.5 1


0 1 h 1 week 2 weeks Time Stored in Vacuum at Room Temperature 1 week 2 weeks Matrix Segregation


1 x108 Lattice Atoms/cm3 / Atoms/cm2


1 x105 Ga Atoms/cm3 / Atoms/cm2


Normalized N Concentration Difference (%)


N Concentration (at.%)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284