search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
230 Tomas L. Martin et al.


(~1.405) should give the same distribution as observed in the LEAP 5000 data, providing sufficient statistics are obtained for both.


RESULTS


Figure 1 shows example atom maps for the four types of materials used in this study. Three were steels with different types of cluster—metallic, oxide, and carbide, while the final material is an implanted semiconductor with low levels of impurity at a small region near the surface. In each case, small features were chosen to see if the change in detector efficiency resulted in the expected increase in atom count in the features, as well as comparing the effect on other aspects of the data such as cluster composition. Cluster size was defined as the number of solute ions in the cluster, except in cases where the cluster radius was used, as defined in nanometers.


Copper Clusters in an SG Steel (Voltage Mode)


The simplest comparison is between two metals with small- scale clustering in voltage mode, where the effects of laser wavelength cannot affect the measurements. In the reactor pressure vessels of nuclear reactors, even small cluster for- mation during operation can be detrimental to the lifetime of the reactor, particularly if the clusters are of an element with a larger atomic radius than the matrix such as Cu (Styman et al., 2012). This study selected one such material, where nanometer-scale Cu precipitates were known to occur after long-term aging. These clusters can often be very small, and identifying them from the matrix at the early stages of for- mation can be challenging; it is hoped that the higher effi- ciency detector will potentially aid in the observation of early-stage clustering. Figure 2a shows the size distribution of the Cu clusters


across four data sets obtained on the LEAP 3000 (in black) to five data sets obtained on the LEAP 5000 (in blue), while


Figure 2b shows the empirical distribution function for the same data. The latter more obviously shows the difference between the two distributions. There are a similar number of large-scale clusters (above ~5000 atoms), but more clusters are observed at low atom counts in the LEAP 5000, parti- cularly for clusters <1000 atoms. The median count of solute atoms was 218 atoms in the LEAP 3000, but only 129 atoms in the LEAP 5000, despite the median cluster radius remaining essentially unchanged, at 1.17 nm for the LEAP 3000 data and 1.13nm for the LEAP 5000 data. A possible interpretation of this result is that the higher efficiency of the LEAP 5000 is enabling more of the clusters, which contain fewer atoms, present in the material to be observed, as expected. As some of the clusters were not being detected previously in the LEAP 3000 data sets, it is hard to estimate the detector efficiency increase based on comparing the two distributions. Figure 3 compares the chemistry of all 119 clusters in the LEAP 3000 data and 85 clusters in the LEAP 5000 data.Over


Figure 1. Atom maps for the materials used during this study. a: Cu clusters in a thermally aged reactor pressure vessel (RPV) steel; (b) yttrium oxide clusters in an oxide-dispersion- strengthened (ODS) steel; (c) carbides in a bearing steel, and (d) phosphorus at the surface of implanted silicon. All atom maps shown were analyzed using the LEAP 3000.


four LEAP 3000 data sets, 45 million atoms of data was obtained, compared with five LEAP 5000 data sets totaling just over 30 million atoms, so although the total number of clusters should not be compared directly, sufficient data was obtained to compare the statistics between the two instru- ments. Although the scatter in the composition plots in Figures 3a and 3b is high, there is a trend for the average Fe content to be higher in the LEAP 3000 data than in the LEAP 5000 data, by ~3 at%, with a corresponding drop in Cu and Mnsolute. When the Fe content is normalized to the reduced cluster radius, as in Figure 3c, this trend, although slight, remains. The measured Fe concentration in the clusters is likely incorporating a significant contribution from the surrounding matrix as a result of magnification effects due to the difference in evaporation field between the Cu and Fe (Gault et al., 2012; Larson et al., 2013). One possible expla- nation is that the difference highlighted in Figure 3 results from the change in hit detection algorithm with respect to multiple hit events. Fe–Fe pairs account for 99% of the multiple ions detected, therefore any improvement in the recognition of multiple hits will predominantly increase the detection of Fe. Thus, if the algorithm improves the discrimination of individual ions within multiple hit events, it could explain the increased Fe content measured in these clusters.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284