search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Segregation and N Measurement in Steel by APT 391


at 35 Da. With LP there are greater numbers of both molecular ions and single-charged species. At 50 pJ pulse energy, Fe2N2+ molecular ions are also present at 63 Da. There is also evidence for a greater number of H-containing molecular ions, as the 57Fe-containing peaks for FeN2+


and Fe+ appear abnormally high, and thus are more likely 56FeH-containing molecular ions. A higher number of single-charged ions is evident in the increased peak height for Fe+ and the appearance of FeN+. The higher number of single-charged and molecular ions


in LP mode also gives evidence towards the mechanism by which N measurement is decreased. Being an Fe-based alloy, the largest peak in the mass spectrum is for 56Fe2+,which appears at 28Da. If a largeamount ofNevaporates as an 14N2


+


single-charged molecular ion, it will also appear at 28Da. The relative size of the two overlapping peaks will completely obscure the N2 evaporates as N2


+ signal. It is unknown what fraction of N + in VP mode, but some insight can be taken


from the report of (Sha et al., 1992). Those researchers con- ducted VP mode experiments with an Fe sample enriched in the 15N isotope, so as to be able to de-convolute the peak at 28Da. Their results suggested mapping the 28Da peak solely as 56Fe2+ leads to a 26% lower measurement of N content. Based on the behavior of other ions when comparing VP mode with LP mode, it can safely be assumed that the fraction of N “lost” as N2


+ will be greater in LP mode.


increases surface migration of N towards high electric field regions (Gault et al., 2012a). This behavior can increase the tendency to evaporate as a molecular ion, possibly con- tributing to an increased fraction ofN2


It has also been reported that the use of LP mode +. Such molecular ions


may also postionize and dissociate, arriving as multiple ion hits to the detector. However, if these ions are of the same isotope (e.g., 14N) and arrive very close to each other on the detector, one ion may be lost to the pile-up effect (Thuvander et al., 2011; Miyamoto et al., 2012). To determine the influence that pulsing mode has on N


measurement across the ferrite–martensite interface, inter- face samples are prepared and analyzed using amethodology


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0


Voltage Pulse Laser Pulse (50 pJ)


Effects of Sample Preparation As the use of LP mode analysis cannot fully explain the apparent loss of N content in Fe–Mn–N martensite, it must be considered that some N loss may be caused by sample preparation. In this case, the lower than expected N content measured by APT accurately reflects a real reduction in N concentration of the sample. As all interface-containing


25 20 15 10 5 -20 -15 -10 -5 0 5 Distance from Interface (nm)


Figure 9. 1D concentration profiles of N across ferrite-martensite interfaces in Fe-Mn-N, obtained by VP and 50 pJ LP. Ferrite grains are on the left side of the plot.


10 15 20 0 Voltage Pulse


Laser Pulse 15 pJ


Laser Pulse 50 pJ


Figure 10. Calculated Fe ion detection loss in FIB-prepared Fe-Mn-N martensite analyzed by VP and by LP with 15 pJ and 50 pJ pulse energies.


identical to the data presented in the Fe–Mn–C and Fe–Mn– N Ferrite Growth Interfaces section, but with the data acquired in VP mode. The N concentration profiles across the transformation interface for both LP and VP data sets are presented in Figure 9. As clearly shown by the N profiles, the concentration peak of ~2.5 at.% at the interface is far higher in the VP sample than in the LP sample. However, the con- centrations in the grains appear approximately equal between VP and LP modes, at >0.5 at.%. Furthermore, the VP mode data also shows no significant difference in the N concentration between the ferrite and the martensite grains. These results indicate that while pulsing mode has a sig- nificant effect on N measurement by APT, this effect alone cannot explain the abnormally low N concentration measured for Fe–Mn–N martensite, compared with ferrite. It is also worth noting that the correction procedure for Fe


ion detection loss, as laid out in the work of Miyamoto et al. (2012) for Fe–C, indicates a far greater detection loss in VP mode than in LP mode (Fig. 10). This trend of increased detection loss is found linked to a greater fraction of multi-hit events, as has been noted by others (Marceau et al., 2013; Kitaguchi et al., 2014). As the data presented in this work is corrected for Fe detection loss, the higher N measurement in VP mode is notsimplyanartifactofthiseffect.Inaddition, these results on Fe ion detection loss suggest that for steels in which N detection is not relevant, compositional accuracy in APT analysis, for noncorrected data, is improved using LP mode over VP mode. For analysis of N content however, VP mode analysis provide more accurate results, even though post- acquisition correction of the composition data will be required.


N Concentration (at.%)


Fe Ion Detection Loss (%)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284