search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide 319


extend to the specimen apex region (not shown). As the diffusion coefficient of Li in LMO can vary up to several orders of magnitude depending on the Li content (Bach et al., 1998; Yang et al., 1999; Ouyang et al., 2004), Li diffusion is expected to be strongly localized in the inhomogeneous microstructure. However, there is no direct experimental evidence to differentiate whether Li transport predominantly occurs in one of the observed most likely metastable Li-depleted phases, or along the interface of different phases. As in Figure 5, the Li-rich and Li-depleted regions are


Figure 6. Ratio of Li to Mn (complex ions split) perpendicular to the alternating regions of different Li density for the part of the reconstruction marked in Figure 5a.


After a transition region, from 120 to 160nm with an increased slope, the ratio of Li to Mn exhibits no dependence


on the reconstruction depth and appears constant with some fluctuations. The ratio of Li to Mn perpendicular to the alternating


regions of different Li density, for the part of the recon- struction marked in Figure 5a, is displayed in Figure 6. The ratio is alternating between three different ranges of values, with relatively sharp transitions between them. A ratio between 0.45 and 0.5 is typically found for not or just slightly deintercalated LxMO specimens (cf. Maier et al., 2016). The other ratios from 0.35 to 0.3 and from 0.15 to 0.1 do not fitto the equilibrium phases of LMO reported in Ohzuku et al. (1990). However, they are similar to those reported for the two nonequilibrium phases observed in chemical lithiation experiments of λ-MnO2 (Li et al., 2000). As similar compo- sitions were observed for all deintercalated specimens, this indicates that the in situ atom probe deintercalation yields an early nonequilibrium stage of deintercalated LxMO. Amicroscopic model for the deintercalation mechanism


can be developed by relating the two regions in Figure 5a to the two stages of deintercalation introduced above. The first part in Figure 5, up to a depth of 120 nm, can be associated with the homogeneous field evaporation behavior at stage 2. The spatially and temporally homogeneous field evaporation and the absence of specific structures in the reconstruction, indicate temporally and spatially homogeneous volume diffusion of Li as deintercalation mechanism. Furthermore, comparing the Li content in the first 120 nm, of Figure 5 with the inhomogeneous microstructure behind, shows that the amount of missing Li approximately equals the amount of ions detected at 19.3amu (cf. Fig. 3). On the other hand the inhomogeneous microstructure


in Figure 5a most likely is related to the inhomogeneous field evaporation behavior of stage 1. This interpretation is


supported by deintercalation experiments stopped at stage 1, where the inhomogeneous microstructure was observed to


often nearly parallel and usually oriented such that their surface normal is not perpendicular to the specimens axis of symmetry. Thus, preferential Li transport along the Li-depleted regions causes an azimuthally inhomogeneous Li distribution, in accordance with the observation that Li is typically detected on one side of the detector during stage 1 (cf. Fig. 4). In this process, Li-ions do not necessarily have to be field evaporated once they reach the specimen surface. It is also conceivable that first surface diffusion takes place and localized field evaporation occurs at specific sites. Hence, the spatially and temporally inhomogeneous


in situ deintercalation at stage 1 is expected to be correlated to the microstructural evolution and phase transition in the LxMO. Nevertheless, also during stage 1 the deintercalation mechanism of stage 2 is expected to be active, although at very low rates.


CONCLUSION


In this work, the influence of Li-ion mobility in LiMn2O4 on atom probe analysis of the material was investigated. It was demonstrated that for conventional atom probe analysis at 30 K, Li-ion mobility is suppressed below the detection limit, so that the materials microstructure can be characterized reliably. At 298 K, a substantial increase in mobility can be achieved, enabling in situ deintercalation of the material in the atom probe without affecting the Mn–O host structure significantly. Two different modes of deintercalation have been observed: spatially and temporally inhomogeneous deintercalation at high rates at the beginning, followed by homogeneous deintercalation at low rates. Characterization by conventional atom probe analysis revealed a complex nonequilibrium microstructure, with alternating Li-rich and Li-depleted regions subsequent to deintercalation. A model for the deintercalation mechanism based on homogeneous volume transport and localized transport in the Li-depleted regions was proposed. The methodological approach presented here allows


in situ preparation and subsequent characterization of non- equilibrium microstructures in an ionic conductor. This way, insights into the microstructural evolution accompanying deintercalation processes can be obtained. Particularly for nanowire Li-ion batteries, new insights into the mechanisms related to electrochemical energy conversion are expected, that are currently not accessible with other in situ techniques (Lee et al., 2013, 2015).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284