search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 340–349, 2017 doi:10.1017/S1431927616012629


© MICROSCOPY SOCIETY OF AMERICA 2017


Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures


Zemin Wang,1,2 Xulei Fang,1 Hui Li,1 and Wenqing Liu1,*


1Key Laboratory for Microstructures, Shanghai University, Shanghai 200444, P. R. China 2School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China


Abstract: The formation of copper-rich precipitates of 17-4 precipitate hardened stainless steel has been investigated, after tempering at 350–570°C for 4 h, by atom probe tomography (APT). The results reveal that the clusters, enriched only with Cu, were observed after tempering at 420°C. Segregation of Ni, Mn to the Cu-rich clusters took place at 450°C, contributing to the increased hardening. After tempering at 510°C, Ni and Mn were rejected from Cu-rich precipitates and accumulated at the precipitate/matrix interfaces. Al and Si were present and uniformly distributed in the precipitates that were <1.5nm in radius, but Ni, Mn, Al, and Si were enriched at the interfaces of larger precipitates/matrix. The proxigram profiles of the Cu-rich precipitates formed at 570°C indicated that Ni, Mn, Al, and Si segregated to the precipitate/matrix interfaces to form a Ni(Fe, Mn, Si, Al) shell, which significantly reduced the interfacial energy as the precipitates grew into an elongated shape. In addition, the number density of Cu-rich precipitates was increased with the temperature elevated from 350 up to 450°C and subsequently decreased at higher temperatures. Also, the composition of the matrix and the precipitates were measured and found to vary with temperature.


Key words: 17-4 PH stainless steel, atom probe tomography, tempering, Cu-rich precipitate, hardening


INTRODUCTION


17-4 precipitation hardened stainless steel (17-4 PH SS) is a widely used structural material in nuclear and aero- nautics industries, due its high strength, combined with an acceptable level of ductility and corrosion resistance in harsh conditions, such as a leading screw in light water reactors, missile fittings, and jet engine parts (Rack & Kalish, 1974; Viswanathan et al., 1989; Danoix & Auger, 2000; Hsiao et al., 2002; Wang et al., 2005). Over the past several decades, a variety of studies on 17-4 PH SS have been performed (Viswanathan et al., 1988; Hsiao et al., 2002; Wang et al., 2006). It has been established that nanoscale Cu-rich precipitates (CRPs), uniformly dispersed in the martensitic matrix, contribute to the precipitation hardening of the steel. In a conventional transmission electron microscopic


(TEM) study of 17-4 PH SS, Rack and Kalish (1974) reported that the strengthening was initially attributed to coherent Cu-rich clusters, which gradually transformed to face-centered cubic (FCC) CRPs upon further aging. Viswanathan et al. (1989) discovered that FCC CRPs appeared after tempering above 470°C and that reversed aus- tenite formation that occurred above 580°C . Employing atom


*Corresponding author. wqliu@staff.shu.edu.cn Received June 29, 2016; accepted December 5, 2016


probe field ion microscopy, Murayama measured the chemical composition of fine spherical CRPs formed at 580°C, which were enriched in Fe, Ni, and Cr. Meanwhile, G-phase precipitates containing Ni, Si, andMnwere possibly formed near the Cu precipitates after aging at 400°C for 5,000 h (Murayama et al., 1999), which is similar to previous reports about the precipitation in Fe–Cu and Fe–Cu–X alloys (Othen et al., 1991; Osamura et al., 1994., Maruyama et al., 1999). However, different results on the morphological structure of Cu precipitates in steels, with various composi- tions, have been reported. Kolli & Seidman (2008) reported, in an atom probe tomographic (APT) study, that a core/shell structure of the CRPs was formed in the over-aged condition of a Fe-2.09 Cu-2.83 Ni-0.68 Al (all in wt%) alloy, with a Cu- rich core and a shell containing Ni and Al. Recently, Jiao et al. (2015) and Wang et al. (2015) reported that composite precipitates, consisting of Ni–Al-rich and Cu-rich phases side by side, were formed during extended aging of Fe-1.5 Cu-5.0 Ni-2.0 Al-3.0 Mn (all in wt%) alloyed steel and Fe- 0.95 Cu-3.13 Ni-1.09 Al-1.87 Mn (all in wt%) alloyed steel. It seems that the presence of Cu, Ni, Al, and Mn in steels have significant effects on the precipitation mechanism, and thus the final precipitate morphology, as well as the resultant precipitation hardening effect of CRPs. Only a limited number of APT studies addressing


the formation of CRPs in 17-4 PH SS have been made. In this paper, APT is utilized to characterize the features of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284