search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
308 Daniel Haley et al.


subsequent absorption by other materials (Konda & Chen, 2015). Second, pure vanadium was examined where, at the pressures used in this study, both H and D are in solid solution. Vanadium is unusual in that the phase diagram for V-H is markedly different to V-D (Manchester, 2000). Thus, care must be taken in interpretation of the D interac- tion withinVand the extrapolation of these results to predict the behavior of H. For the purposes of this work, these materials are used to demonstrate the capability of APT to characterize hydrides. The Pd-H system, for which extensive data are available


and for which the Pd-D systemexhibits similar behavior, has a unique two-phase region. At room temperature the two-phase α−β region occurs between 2 and 40 at% hydro- gen, between which the pressure-composition isotherm is relatively flat (Manchester, 2000). The Pd–Rh-H system behaves similarly, and Rh is considered to not alter D solubility considerably within the pressure range in this study (Thiebaut et al., 1995). This two-phase region is slightly wider at the cryogenic temperatures used by APT analysis, but otherwise should not differ for the purposes of this work. Solubility isotherm data indicates that at equilibrium


with 100 kPa (1 bar) hydrogen, the equilibrium solubility should exceed 0.75H atoms per metal atom for both Pd and Pd–Rh. The bulk diffusion rate for Pd-D at room tempera- ture is ~5.5×10− 11m2/s (Flanagan & Oates, 1991), which yields a 95% diffusion time of 5×10−5 s for a 100nm linear diffusion path, indicating rapid equilibriation within the bulk. However, adsorption/desorption kinetics of H to/from the surface of the material are likely to dominate the time to equilibriation (Schwarz et al., 2005). Thus these timescales are likely to be widely underestimated in describing actual diffusion behavior. PureV(Goodfellow, 99.8%; Huntingdon, Cambridgeshire,


UK) and an alloy of Pd–6.25%Rh (Johnson Matthey, Royston, Hertfordshire, UK) both in the form of drawn wires were used in this study. The needle-shaped specimens required for APT were generated using standard electropolishing techniques (Miller et al., 1996). For V a sulfuric-ethanol solution was used,


whereas a two-stage 25% perchloric-75% acetic, then 10% perchloric-acetic mixture was used for Pd–Rh. Prior to deuterium charging, samples were initially


reflectron-equipped LEAP 3000HR system in voltage-pulsing mode at 50K with a 15% pulse fraction. Pd data was obtained at a pulse frequency of 100 kHz to prevent Pd mass “wrap-around” (i.e., ions that are incorrectly assigned a sub- sequent pulse, and thus incorrect time-of-flight due to their long flight time) at low voltages, and V data were obtained at 200 kHz. A voltage reconstruction algorithm (Cameca IVAS 3.6.6, Madison, Wisconsin, USA) was used to generate three-dimensional (3D) data from the APT experiment. A schematic and photograph of the constructed deu-


subject to APT analysis using the laser-pulsing mode to remove surface oxides using an incident laser energy of 0.2 nJ, as laser mode has improved yield. APT analysis was then switched to voltage-pulsing mode to obtain a baseline signal in the undeuterated specimens, incorporating ~5× 105 detected ions. Samples were then removed from the vacuum, charged with deuterium and re-introduced into the atom probe vacuumsystem, with air-transfer times on the order of minutes. Postcharging, sample re-introduction into the cryogenically cooled atom probe analysis chamber was achieved within 45 min from deuterium charge completion. All APT characterizations were conducted using a


terium gas charging system are shown in Figure 1. The apparatus is a pneumatic system primarily constructed of 316 stainless steel, which allows for N2 purging and then subsequent deuterium charging of APT samples. The maxi- mum pressure of the system is limited to 500 kPa (5 bar). APT samples were loaded into the deuterium charging


rig while still within their APT specimen holders for straightforward transfer to/from the LEAP 3000HR. Atmospheric oxygen was purged by at least five cycles of purging gas, N2, at 500 kPa (5 bar) then the pressure reduced to 100 kPa (1 bar) (abs.).Next,D2 was pressurized at 500 kPa (5 bar), then vented to 120 kPa (1.2 bar). This was repeated three times to purify the D2 content in the chamber. Subsequently gaseous charging with D2 gas was conducted.


Figure 1. Instrumentation diagram and photograph of the charging rig developed for this study. The charging chamber in the image is at the bottom right. Atom probe tomography samples in holder are inserted and the chamber is pressurized. Deuterium cylinder is shown in the left side of the photograph.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284