search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
436 Zirong Peng et al.


Figure 4. The atomic percent of carbon in carbon and tungsten [C/(C+W) at%] (solid black lines) and the fraction of ions detected as multiple events (blue dotted lines) obtained from various APT test series: (a) 3000PE, (b) 5000PRR, and (c) 3000BT. The lines with point-up triangles represent the results from the ascending (A) test series and that with point-down triangles represent the results from the descending (D) test series.


discussion. Across all experimental conditions, the NSR resulting from the ascending and descending test series are different from each other. Whenever higher standing voltage was applied, as listed in Table 2, NSR was higher, implying that larger specimen radii will lead to higher background levels. In the 3000PE and the 3000BT series, the changes inNSR


correlate with the changes in the standing voltage, indicating that here, the specimen radius is the primary factor. Laser pulse energy, specimen base temperature, and specimen shank angle only have minor effects. As the 5000PRRD series shows, there is an apparent increase in NSR when the pulse repetition rate decreases to 250, 200, and 100 kHz. For the remaining nine tests, NSR values are almost steady and amount to 0.056±0.007. The background levels (ppm/ns) directly obtained from the IVAS software are also provided (see Sup- plementary Data). It can be seen thatwhen the pulse repetition rate is 100 kHz, the background level is around 300ppm/ns, which is nearly six times higher than the cases using relatively high pulse repetition rates (333, 500, 1,000 kHz). Therefore, the effect of the pulse repetition rate strongly depends on the specimen radius. Lowrepetition rateswill be detrimentalwhen the specimen radius is relatively large. From themass spectra shown in Figure 1, itmay look like


the measurements performed in the 3000X HR have lower background level compared with that in the 5000 XS, which seems to contradict the results of the NSR displayed in Figure 3. The reason is that the mass spectra in Figure 1 were normalized separately with respect to the highest peak, i.e. 12C2+. As the laser systems applied in the 3000X HR and the 5000 XS are different, the laser-specimen interactions are also different, giving rise to different proportions of the detected carbon ion species (Houard et al., 2010; Santhanagopalanetal.,2015).For instance,in the 5000 XS a certain part of carbon was detected asWC2+, which was never found in the data acquired using the 3000X HR.


Chemical Composition


The prerequisite to obtain chemical information from APT data sets is to identify the mass peaks and define a mass range for each peak. Figure 1 shows the result of peak assignment. To maintain consistency and exclude the resulting chemical compositions from being biased by differences in mass ranging (Hudson et al., 2011), the same evaluation procedure was applied to all the peaks. As mentioned previously, the peak range was defined by the full width down to the back- ground and the local mass-based background subtraction model, provided by the IVAS software, was used to remove the background counts. The atomic ratios between carbon and tungsten of each measurement are summarized in Supplementary Table S1 and the atomic fraction of carbon within carbon and tungsten [C/(C +W) at%] plotted against the various test variables (solid black line) are shown in Figure 4. For most acquisition conditions used in this work, the resulting compositions are close to that determined by other chemical analysis techniques. Only the measurements conducted with 1MHz pulse repetition rate show distinct deviations. Considering that the volume examined at each condition is small and there may be some chemical fluctua- tions of the specimens at the nanometer scale, it is difficult to reveal the impact of different experimental parameters on the resulting chemical composition.


Supplementary Table S1


Supplementary Table S1 can be found online. Please visit journals.cambridge.org/jid_MAM.


Proportion of Multiple Events


The fraction of multiple events is also important for asses- sing the quality of an APT data set. Figure 4 shows the


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284