search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
432 Zirong Peng et al.


applications (Andrén, 2001), has been chosen to study the above-mentioned effects. Laser-pulsed APT was used as the acquisitionmode as according to a previous study (Thuvander et al., 2011), voltage-pulsed APT leads to large errors in quantitative analysis of carbon concentration in carbides. Two different local electrode atom probe (LEAP) systems were used to study the impacts of experimental parameters, including laser pulse energy, pulse repetition rate, specimen base temperature and specimen geometry, as well as instrumental parameters such as laser type and detector performance on the final data quality. The quality of the mass spectra, the accuracy of the resulting chemical compositions, and the proportions of multiple detection events have been evaluated.Aspecial emphasis was placed on the assessment of the significance of the detector pile-up effect. All these results provide useful guidelines for optimizing the laser-pulsed APT acquisition parameters with regard to carbon detection and quantification.


MATERIALS AND METHODS


The studied material is nano-grain-sized cemented tungsten carbide with a cobalt binder (Ceratizit S.A., Mamer, Luxembourg). Its nominal composition determined by chemical analysis is given in Table 1. The carbon content was measured by infrared (IR) absorption spectroscopy after combustion, whereas the N content was checked by thermal conductivity measurement. Quantitative chemical analyses of other elementswere performed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The atomic ratio between carbon and tungsten is calculated to be 0.99, very close to the stoichiometric value of 1. APTspecimenswere prepared using a dual beamfocused-


ion beam (FIB) instrument (FEI Helios Nanolab 600/600i, Hillsboro, OR, USA) by an in situ lift-out method (Thompson et al., 2007). Commercial flat-top Si MicrotipTM arrays (CAMECA Instruments,Madison,WI,USA) were used as the support posts. To minimize the damage areas induced by the high-energy Ga ion beam during the specimen fabrication, a final cleaning step was carried out at 2kV and 28 pA. Laser-pulsed APT experiments were conducted on both a LEAPTM 3000XHRand a LEAPTM5000 XS device(CAMECA Instruments). The 3000X HR instrument uses a 532-nm- wavelength green laser, whereas the 5000 XS instrument uses a 355-nm-wavelength ultraviolet (UV) laser with a more tightly focused laser spot. As the 3000X HR system is equipped with a reflectron lens, which contains a field-defining mesh, the detection efficiency is about 37% and the flight path length is ~382mm. For the 5000 XS system, the straight flight path is


fixed at 100mm and the detection efficiency is increased to 80%, according to the instrument supplier. To investigate the influence of the laser pulse energy,


pulse repetition rate and specimen base temperature on the final data quality including mass spectrum, chemical com-


position, and multiple events, six different test series were carried out, denoted as 3000PEA, 3000PED, 5000PRRA, 5000PRRD, 3000BTA, and 3000BTD in the following. Here 3000 or 5000, respectively, indicates the instrument with which the test was performed, i.e. LEAP 3000X HR or LEAP 5000 XS; PE, PRR, and BT represent laser pulse energy, pulse repetition rate, and base temperature, respectively; A or D indicate the sequence in which the acquisition parameter was changed during testing. Each acquisition parameter was var- ied in ascending (A) and descending (D) sequence in two individual test series. Thereby, on the one hand, the potential influence of the specimen-to-specimen deviations can be excluded, and on the other hand, the impact of the specimen geometry can be inferred. The detailed acquisition conditions and the standing DC voltage range of each measurement are listed in Table 2. The target detection rate of the 3000X HR system was set to be 0.2% (two ions detected every 1,000 pulses), whereas for the 5000 XS system, the target detection rate was increased to 0.5% (five ions detected per 1,000 pulses), to compensate the difference in detection efficiency and maintain a comparable evaporation rate in both systems. For all conditions, the total number of ions considered for data evaluation was >1 million. To compare the laser energy setting between 3000XHR and 5000 XS, an additional test, denoted as 5000PEA, was performed, as listed in Table 2. The commercial software IVASTM 3.6.10 (CAMECA Instruments) was used to reconstruct and analyze the three-dimensional APT data sets. MATLAB was adopted to examine the exported *.ePos files and study the multiple detector events.


RESULTS


The quality of the collected mass spectrum, the accuracy of the resulting chemical composition, as well as the multi-hit proportion, are commonly used to assess APT data quality. In this part, different experimental conditions were evaluated and compared based on these three aspects.


Mass Spectrum


Figure 1 shows four representative, normalized mass spectra acquired using the 3000X HR (Figs. 1a, 1b) and 5000 XS (Figs. 1c, 1d) metrology systems, respectively. The mass


Table 1. Chemical Composition of the Studied Cemented Tungsten Carbide Measured by Chemical Analysis. W C


Co


at% wt%


Balance Balance


47.41 5.92


3.79 2.32


V 0.63 0.333 Si 0.28 0.081 Cr 0.06 0.0323 Fe 0.05 0.0267 Cu 0.02 0.0141


N 0.02 0.0025


Ca 0.003 0.0013


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284