search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
244 Frédéric De Geuser and Baptiste Gault


corresponding to Fig. 4a). To adjust the orientation of the specimen, we have minimized the distance between the observed and predicted poles only. An alternative methods would have been to adjust the orientation by pattern matching on the figure showing the zone axes. For known structures, building a database that could be used for pattern matching is feasible only if the projection is known. Such an effort would allow for automated determination of the orientation of the specimen by techniques similar to those used in electron microscopy orientation mapping, e.g., electron backscatter diffraction (Britton et al., 2016), nano-beam diffraction (Rauch & Véron, 2014), or transmission Kikuchi diffraction (Keller & Geiss, 2012; Trimby, 2012).


DISCUSSION ON THE EFFECT OF THE PROJECTIONMODEL ON THE RECONSTRUCTED VOLUME


It is difficult to determine a good metric for the accuracy of atom probe reconstructions as it really depends on what is being investigated. However, there are two general aspects that are usually, albeit implicitly, used as quality assessment of the reconstruction:


1. Angular distortions: if the volume contains planar features such as an interface, thin layers or platelets precipitates, one expects them to appear flat in the reconstruction.


2. Distance accuracy: it is very common to check for known interplanar distances as a mean of reconstruction calibration.


Both of those aspects had been discussed by Bas et al.


(1995) already. A perfect illustration of this is the expression of z in equation (3). It consists in the sum of zc, the analyzed depth, and R cos θ, which links the curvature of the sample to the position of the atoms in the final reconstructed volume. Schematically, we can say that the error on R cos θ is indi- cative of angular distortions, whereas the error on zc corres- ponds to depth calibration error. Interestingly, these two aspects are not independent. Errors on R cos θ will occur if the projection model is


inaccurate. Systematic errors can, to a certain extent, be compensated by an adjusted R with respect to its physical value. However, this will also influence every other aspects of the reconstruction, in particular the depth of analysis (Gault et al., 2009). If we know the actual projection law, it is possible to


reverse project any given object to test the reconstruction protocol. In Appendix A, we derive the analytic equations of two planes normal to the analysis direction and located at a distance τ from each other, mimicking the reconstruction of a thin layer of thickness τ. It should be kept in mind that this is in the absence of any other reconstruction artifacts such as local magnification or trajectory aberrations due to variation in local evaporation fields.We can apply this


to the simulated geometries used above. Again, we are in a very ideal situation where the sample has a completely smooth surface. In this context, no near-field effect can deteriorate the reconstruction (Vurpillot et al., 2000; Oberdorfer et al., 2013), and we should thus obtain the best possible reconstructed layer. In addition, we have a full knowledge of the sample geometry, so that no calibration should be needed. Equation (A.13) shows that the expression of the


reconstructed z is dependent on θ (whereas it should be constant for a plane normal to the direction of analysis). Again it has two contributions: (i) the effect of the error on R cos θ (proportional to R*


R


cos θ* cos θ ) and (ii) the effect of the error


on the depth of analysis (proportional to R


2 R*


sin θmax sin θ*


max ). The calibration of an APT reconstruction is very often


performed by checking a known interplanar distance, i.e., by calibrating the depth of analysis. We see from equation


(A.13) that for this we need to adjust R


2 R*


sin θmax sin θ*


max to make it


close to 1. The influence of θmax is very important here as its contribution is squared. Of course it can be adjusted by artificially adjusting R and/or the ICF, which is what is necessarily done in practice in the absence of other infor- mation on their value, but it can only result in some degree of angular distortions. It also means that, in the case where the radius has been measured, for instance by ex situ electron microscopy, the actual value may not be the one that should be used to optimize the calibration of the recon- struction. The same holds true for caseswhere the ICF can be measured. To illustrate this, we have used equation (A.13) to


reconstruct a 5-nm thin layer normal to the analysis in one of the simulated sample geometries (R=90 nm, α=14°). We show only the trace of this layer in the (x, z) plane. The result is shown in Figure 8. With the actual physical parameters as input, the equi-


distant projection models quite accurately predicts the shape of the layer. Its thickness is accurate. Only faint distortions appear at large angles. The pseudo-stereographic projection predicts a layer thickness about 8% thicker than the expected 5 nm, mostly linked to a wrong value of θmax that causes an inaccurate estimation of the analyzed surface. The distor- tions are very important, even at moderate angles. If one assumes an a priori knowledge of the thickness of the layer, one could adjust the reconstruction parameters to achieve it. For this, one could change the value of the radius and/or that of the ICF. This is illustrated by the two lower images in Figure 8 where the layer has been forced to a central thick- ness of 5 nm. It is obvious that there remain some distortions and the layer does not appear flat. Again, this is in a very ideal situation where the model should work at its best. This explains why, because of the chosen standard angular projection model, there can always be, even in the most accurately calibrated APT reconstruction, some remaining distortions which sadly may lead potential readers to be less confident in the results.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284