search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
298 Andreas Stoffers et al.


approach at two different GB arrangements in mc-Si. In case of a Σ3-Σ9-Σ27 TJ, the HAADF STEM images could resolve the complex atomic structure of the Σ9 and Σ27 interface. The C segregation in the correlated APT measurement suggests that the observed dissociation of the Σ27 interface facilitates impurity segregation and thus leads to an increased recombination activity in the related EBIC signal. In case of an incoherent Σ9 interface, the APT data could


only be interpreted together with the additional HRSTEM information. Here, two different GB segments with a funda- mental different atomic structure were present, explaining the differences in the solubility of C, Cu, (Fe+N), andOat these two interfaces. As a proof of principle, the faceted atomic structure of a Σ3 GB inside an APT specimen was resolved in HRSTEM.


ACKNOWLEDGMENTS


The authors would like to thank Winfried Seifert for pro- viding the mc-Si samples and for performing the quantitative EBIC analysis. The authors would also like to thank Uwe Tezins and Andreas Sturm for technical support running the


APT and FIB systems at the MPIE. Part of this work was financed by the Federal Ministry of Education and Research (BMBF 03X5522A).


REFERENCES


BABINSKY, K., DE KLOE, R., CLEMENS,H.&PRIMIG, S. (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144,9–18.


BATSON, P.E., DELLBY,N. & KRIVANEK, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617–620.


BLAVETTE, D.,WANG, H., BONVALET, M.,HÜE,F.&DUGUAY, S. (2014). Atom-probe tomography study of boron precipitation in highly implanted silicon. Phys Status Solidi A 211(1), 126–130.


BRANDON, D.G. (1966). Structure of high-angle grain boundaries. Acta Metall 14(11), 1479–1484.


COJOCARU-MIRÉDIN, O., MANGELINCK,D.&BLAVETTE, D. (2009). Nucleation of boron clusters in implanted silicon. J Appl Phys 106(11), 113525.


COUILLARD,M., RADTKE,G.&BOTTON, G.A. (2013). Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy. Philos Mag 93(10–12), 1250–1267.


DABROWSKI,J.&MÜSSIG,H.-J. (2000). Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World.World Scientific, Singapore.


DI SABATINO,M. & STOKKAN, G. (2013). Defect generation, advanced crystallization, and characterization methods for high-quality solar-cell silicon. Phys Status Solidi A 210(4), 641–648.


FELFER, P.J., ALAM, T., RINGER,S.P. & CAIRNEY, J.M. (2012). A reproducible method for damage-free site-specific preparation of atomprobe tips frominterfaces. Microsc Res Tech 75(4), 484–491.


HERBIG, M., CHOI,P.&RAABE, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153(0), 32–39.


HERBIG,M., RAABE,D., LI, Y.J., CHOI,P., ZAEFFERER,S.&GOTO,S. (2014).Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112(12), 126103.


ISTRATOV, A.A., BUONASSISI,T.,MCDONALD, R.J., SMITH,A.R., SCHINDLER, R., RAND, J.A., KALEJS,J.P.&WEBER,E.R.(2003). Metalcontent of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. JApplPhys 94(10), 6552–6559.


KÄSHAMMER,P.&SINNO, T. (2015). A mechanistic study of impurity segregation at silicon grain boundaries. J Appl Phys 118(9), 095301.


KRAKAUER, B.W. & SEIDMAN, D.N. (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48(9), 6724–6727.


KUZMINA, M., HERBIG, M., PONGE, D., SANDLÖBES,S.&RAABE,D. (2015). Linear complexions: Confined chemical and structural states at dislocations. Science 349(6252), 1080–1083.


KVEDER, V., KITTLER,M.&SCHRÖTER, W. (2001). Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior. Phys Rev B 63(11), 115208.


LANGFORD, R., HUANG, Y., LOZANO-PEREZ, S., TITCHMARSH,J. & PETFORD-LONG, A. (2001). Preparation of site specific trans- mission electron microscopy plan-view specimens using a focused ion beam system. J Vac Sci Technol B 19(3), 755–758.


LEFEBVRE, W., HERNANDEZ-MALDONADO, D., MOYON, F., CUVILLY, F., VAUDOLON, C., SHINDE,D. & VURPILLOT, F. (2015). HAADF– STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy. Ultramicroscopy 159((Pt 2), 403–412.


OHNO, Y., INOUE, K., TOKUMOTO, Y., KUTSUKAKE, K., YONENAGA, I., EBISAWA, N., TAKAMIZAWA, H., SHIMIZU, Y., INOUE, K., NAGAI, Y., YOSHIDA,H. & TAKEDA, S. (2013). Three-dimensional evaluation of gettering ability of Sigma 3{111} grain boundaries in silicon by atom probe tomography combined with transmission electron microscopy. Appl Phys Lett 103(10), 102102.


PHILIPPE, T., DE GEUSER, F., DUGUAY, S., LEFEBVRE, W., COJOCARU- MIRÉDIN, O.,DA COSTA,G.&BLAVETTE,D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109(10), 1304–1309.


PIZZINI, S., ACCIARRI,M.&BINETTI, S. (2005). From electronic grade to solar grade silicon: Chances and challenges in photovoltaics. Phys Status Solidi A 202(15), 2928–2942.


RIEPE, S., REIS, I.E., KWAPIL, W., FALKENBERG, M.A., SCHÖN, J., BEHNKEN,H., BAUER, J., KREßNER-KIEL, D., SEIFERT,W. & KOCH,W. (2011). Research on efficiency limiting defects and defect engineering in silicon solar cells—results of the German research cluster SolarFocus. Phys Status Solidi C 8(3), 733–738.


RIGUTTI, L., BLUM, I., SHINDE, D., HERNÁNDEZ-MALDONADO, D., LEFEBVRE, W., HOUARD, J., VURPILLOT, F., VELLA, A., TCHERNYCHEVA, M., DURAND, C., EYMERY,J.&DECONIHOUT,B. (2014). Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system. Nano Lett 14(1), 107–114.


SCHAFFER, M., SCHAFFER,B. & RAMASSE, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114,62–71.


STOFFERS, A., COJOCARU-MIRÉDIN, O., SEIFERT, W., ZAEFFERER, S., RIEPE,S. & RAABE, D. (2015a). Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovolt Res Appl 23(12), 1742–1753.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284