search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Modern FIB-Based Specimen Preparation for APT 197


Figure 5. Various TEM/APT specimen holders, available either commercially or manufactured by various research groups. a: The E.A. Fishione Instruments 2050 on-axis rotation tomography holder which accommodates standard wire-formatted specimens (image courtesy E.A. Fishione), (b) the Hummingbird Scientific single-tilt tomography holders (half-grid holder shown here) (Gorman et al., 2008) (image courtesy Hummingbird), half-grid holder by Felfer et al. (reprinted from (Felfer & Cairney, 2011a; Felfer et al., 2012) with permission), (d) half-grid holder by Herbig et al. (reprinted from (Herbig et al., 2015) with permission).


a finished specimen. In this section, advances in specimen fixtures and preparation methods, enabling growth of TEM-


based and electron backscatter diffraction (EBSD)-based correlative analysis, are highlighted.


TEM


TEM has been used to characterize and aid end-pointing of APT specimens (Henjered & Norden, 1983; Seto et al., 1999; Arslan et al., 2008; Thompson et al., 2009; Cojocaru-Mirédin et al., 2011; Haley et al., 2011; Larson et al., 2011; Hartshorne et al., 2014; Xiong & Weyland, 2014; Grenier et al., 2015; Herbig et al., 2015; Lefebvre et al., 2015; Diercks et al., 2016), but the process of moving specimens between instruments is laborious, increases opportunity for handling damage of specimens, and invites electron-beam contamination, oxidation, and other damage that may interfere with APT analysis. FIBs equipped with 30kV scanning-TEM (STEM) capability have the advantage of avoiding multi-instrument issues (Felfer& Cairney, 2011a), but may not provide sufficient imaging capability for many situations. The most popular solution has been to develop specimen holders which facilitate transfer between FIB, TEM, and APT without the need to re-fixture the primary specimen holder (Gorman et al., 2008; Cojocaru-Mirédin et al., 2011; Felfer & Cairney, 2011a; Felfer et al., 2012; Xiong & Weyland, 2014; Herbig et al., 2015).


A number of these holders are shown in Figure 5. These fixtures, coupled with protocols that either prevent deposition or remove contamination deposits on specimens, make the proposition of performing TEM-based analysis and successfully collecting APT data on the same specimen feasible. Electron tomography (ET) has been successfully


performed on specimens subsequently analyzed with APT (Arslan et al., 2008; Xiong & Weyland, 2014; Grenier et al.,


2015). In these examples, precipitates and other features are identified by ET and used to aid calibration of APT recon- structions. Analyses from both techniques can be directly overlaid in 3D for comparison, and although each technique uses different material properties to discover features (electron-scattering density versus local composition), there is generally good agreement in overall particle shape from both methods. This illustrates the high resolution and spatial accuracy of both techniques. Although the direct visualization of features with both techniques is very powerful, these types of comparisons are important for aiding the understanding of the field-evaporation processes in APT, better determining optimal reconstruction para- meters for both techniques, and providing important information for evaluating the quality of the ET and APT reconstructions (Arslan et al., 2008). Another example of correlative TEM and APT


measurements on the same specimen region, was recently reported by Herbig et al. (2015, 2014) to study GB segregation in a nanocrystalline pearlitic steel. The half-grid holder shown in Figure 5d was used to transport lift-out specimens between FIB, TEM, and APT, and the process used to create appropriate half-grid specimen carriers is described in (Herbig et al., 2015). The holder is critical because exact control of the sample orientation in all instruments is necessary formerging analyses from multiple instruments, and this is especially critical for enabling optimum TEM measurements. Although this study did not utilize energy-dispersive X-ray spectroscopy or electron energy-loss spectroscopy (EELS), these measurements are possible as well, with a properly equipped TEM(Thompson et al., 2009; Larson, 2011b). The combination of STEM and nanobeam diffraction


(NBD) has been used to characterize the location of columnar grains (Fig. 6d), to accurately measure the relative grain orientations (Fig. 6e), and to discover the locations of secondary phase precipitates for subsequent APT analysis. The APT analysis was used to provide the local chemistry, especially detailing carbon segregation to the GBs (Fig. 6f). The sample was purposely shaped so that the top ~400nm had a maximum thickness of 60nm to provide quality TEM imaging at 200kV for the entire region. As shown in Figure 6, NBD was used to successfully characterize grain orientation down to ~1nm resolution, even for the top 10nm of a specimen where the grain volume is exceedingly small. Compared with a TEM foil, the confined sample volume of an APT specimen makes it easier to locate the same region after tilting. In addition, the sample thickness can be easily calculated from the width of the conical APT tips (Herbig et al., 2015, 2014).


Transmission Electron Backscatter Diffraction (tEBSD)


tEBSD (also known as transmission Kikuchi diffraction) is a recently developed technique that allows the crystallography of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284