search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal., 23, 360–365, 2017 doi:10.1017/S1431927617000174


© MICROSCOPY SOCIETY OF AMERICA 2017


Core-Shell Structure of Intermediate Precipitates in a Nb-Based Z-Phase Strengthened 12% Cr Steel


Masoud Rashidi,* Hans-Olof Andrén, and Fang Liu Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden


Abstract: In creep resistant Z-phase strengthened 12% Cr steels, MX (M = Nb, Ta, or V, and X = C and/or N) to Z-phase (CrMN,M = Ta, Nb, or V) transformation plays an important role in achieving a fine distribution of Z-phase precipitates for creep strengthening. Atom probe tomography was employed to investigate the phase transformation in a Nb-based Z-phase strengthened trial steel. Using iso-concentration surfaces with different concentration values, and subtracting the matrix contribution enabled us to reveal the core-shell structure of the transient precipitates between MX and Z-phase. It was shown that Z-phase forms by diffusion of Cr into NbN upon ageing, and Z-phase has a composition corresponding to Cr1+xNb1−xN with x = 0.08.


Key words: Atom probe tomography, phase transformation, 9–12% Cr steels, Z-phase, local magnification, precipitates


INTRODUCTION


Martensitic 9–12% Cr steels with good creep and corrosion resistance are widely used in components of steam power plants such as pipes, turbine housings, and turbine rotors. Increasing the steam temperature and pressure in such power plants has led to an improved efficiency, reduced fuel consumption, and lower emission of climate-affecting CO2 during the last decades. Consequently, better steels have been developed for such applications and now operate at up to 600°C (Mayer & Masuyama, 2008). Martensitic 9–12% Cr steels possess smaller thermal expansion and higher thermal conductivity compared with austenitic steels and nickel-base alloys. Thus they can also offer a good performance to meet the required flexibility of steam power plants that are used in combination with renewable energy sources, such as wind and solar power plants (Abe, 2015). Z-phase strengthened 12% Cr steels (Danielsen & Hald,


2009; Liu et al., 2016a, 2016b) have been developed aiming to provide long-term creep strength for an increased steam temperature of 650°C. Precipitation hardening is the most important strengthening mechanism to achieve proper creep resistance in these alloys, so a fundamental understanding of the precipitation behavior is required for appropriate alloy development. Experimental results and thermodynamic modeling


show that Z-phase (CrMN, M = Ta, Nb, or V) is the most thermodynamically stable nitride in 9–12% Cr steels in the temperature range of interest. However, the nucleation of Z-phase precipitates is difficult (Agamennone et al., 2006; Danielsen & Hald, 2007; Fors & Wahnström, 2011). Exten- sive work by researchers from the Technical University of Denmark, using transmission electron microscopy (TEM), has led to an understanding of the formation of Z-phase; it


*Corresponding author. masoud.rashidi@chalmers.se Received June 30, 2016; accepted January 16, 2017


occurs by a transformation of MX (M = Nb, Ta, or V, and X = C and/or N) to Z-phase (Cipolla et al., 2010; Danielsen et al., 2012). However, energy-dispersive X-ray spectroscopy (EDS) in TEM is of limited accuracy in the composition measurement of such small precipitates that contain light elements such as N and C (Williams & Carter, 2009). Atom probe tomography (APT), capable of detecting all


elements with equal sensitivity, provides the possibility of analyzing carbides and nitrides in 9–12% Cr steels in more detail. However, these precipitates usually have a higher evaporation field compared with the steel matrix. Hence, they will be imaged on the detector with a higher local magnification than the surrounding matrix. Thus, there will be an area of overlap where ions from both the precipitate and the matrix will be detected. This makes it difficult to obtain an accurate chemical composition and morphology of these small precipitates. The aim of this work is to study the formation of


Z-phase by using APT, and to provide an accurate compo- sition of the precipitates during the transformation fromMX to Z-phase. Moreover, a method was developed to accurately measure the composition of small precipitates that suffer from local magnification artifacts using APT. We will show that Z-phase precipitates are formed by diffusion of Cr to MX precipitates and that the composition of the Z-phase corresponds to Cr1+xM1− xN.


MATERIALS ANDMETHODS


A Z-phase strengthened trial steel “Z–Nb” was produced as an 80 kg ingot by vacuum induction melting. The ingot was then hot rolled into 20mm thick plate. The plate was austenitized at 1,150°C and quenched by air-cooling to room temperature. The steel was then aged for 24, 1,005, and 3,000 h at 650°C. The details on the alloy design and the effects of different alloying elements for Z-phase


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284