search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MFC from a Semiconductor in an STM 447


determination of the microwave attenuation, instead of only measuring the power that is delivered through the probe. All of the measurements with galliumnitride were made


Figure 8. Equivalent circuit for determining the power at harmo- nics of the microwave frequency comb with a grounded semiconductor sample in a scanning tunneling microscope.


under ultrahigh vacuum conditions, typically at a working pressure of 2×10−9 Torr. However, after the sample was cleaned with HF, it was exposed to the atmosphere for 60 min before the system was pumped. Thus, it is possible that vacuum may not be required for these measurements. Measurements of the attenuation of the MFC are


sensitive to the spreading resistance in a sub-nanometer spot at the tunneling junction, which may enable carrier profiling with sub-nanometer resolution. Roadmaps for the semi- conductor industry request that the spatial resolution for carrier profiling be finer than 10% of the dimension at each lithography node. However, this is not possible with present technology at the 7-nm node introduced in 2015, or the 5 and 2-nm nodes that are currently in research mode. SSRM is now the preferred method for high-resolution carrier profiling (Vandervorst et al., 2014), but it changes the lattice at the points where the diamond nanoprobes are inserted (Germanicus et al., 2015). Measurements with an MFC do not require probe insertion and also have the advantage of reduced signal to noise, because of the extremely narrow linewidth, and may determine the dielectric function of the semiconductor as well as the carrier concentration.


Figure 9. Calculated microwave power versus spreading resis- tance at the tunneling junction for the first and second harmonics at 74.254 and 148.508MHz.


calculated using equation (2) for the first and second harmonics at 74.254 and 148.508MHz, respectively. In these calculations, RS2 = 1kΩ, RL = 50Ω, CS = 6.4 pF, and C2 = 12 pF.


Measurements of the MFC with semiconductors require


(1) a forward-biased tunneling junction for greater DC tunneling current; (2) a probe making a surface contact


VIEW programming, enables fast and efficient acquisition, storage, retrieval, and analysis of the data so that every scan was captured and processed. The large data files show occasional sharp changes in the measured microwave power, which we attribute to the feedback mechanism stabilizing the DC tunneling current in the STM. Each time the tip-sample distance is automatically changed to stabilize the tunneling current, this also changes the tip-sample capacitance, which could cause the sharp changes in the measured microwave power. It may be possible to avoid this effect, without disabling the feedback, by switching the spectrum analyzer between the probe and the tip circuit. This would allowdirect


within 200 μm of the tunneling junction; (3) using only the first few harmonics, because the higher harmonics roll-off faster than with metal samples; and (4) a mode-locked laser having a photon energy less than the bandgap energy of the semiconductor, to prevent creating electron-hole pairswhich cause surge currents that interfere with the measurements. The NI PXIe-5668R high-performance VSA, with Lab-


CONCLUSION


Several significant observations can be made by examining Figure 9 and equation (4):


1. The quartic term for the frequency in the denominator of equation (4) causes a much faster roll-off in the microwave power at successive frequencies than that measured with metal samples, as shown in equation (1), and this difference is consistent with our measurements with semiconductors.


2. Figure 9 shows that a factor of 10 increase in the spreading resistance causes the microwave power to decrease by a factor of 100, which may be understood from the quadratic terms in the denominator of equation (4). Thus, measurements of the attenuation of theMFCare highly sensitive to the spreading resistance at the tunneling junction, which is inversely proportional to the carrier density in a sub-nanometer spot.


3. The spreading resistance at the contact of the surface probe with the semiconductor is not critical in these measure- ments, because it is in series with the spreading resistance at the tunneling junction, which is typically about 1MΩ. Thus, it is permissible to use iridium for attaching the probe to the sample, or even a simple pressure contact.


ACKNOWLEDGMENTS


The authors appreciate that National Instruments loaned them a PXI systemwith an NI PXIe-5668R high-performance


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284