search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Core-Shell Structure of Intermediate Precipitates 363


Table 2. The Routine for Calculating the Composition of Small Precipitates Based on the Matrix Deduction From the Precipitate+Matrix Atoms.


Matrix Matrix+Particle


Elements Counts % Counts % Cr


N Fe


Nb W


Co V B C


Mn Ta Ni Si


Correction Based on Removing Co


CoPM/ CoM


2,431,673 12.30 60,411 26.05 0.0032 3,697 0.02 52,839 22.78


15,860,080 80.26 53,622 23.12 75 0 51,175 22.07 34,836 0.18 2,231 0.96 1,038,645 5.26 3,324 1.43 672 0 244 0 163 0


1,672 0.72 1,387 0.60 2,448 1.06


83,254 0.42 690 0.30 0 0


212 0.09


195,529 0.99 1,343 0.58 113,105 0.57 549 0.24


Expected Matrix


7,782 12


50,757 0


111


3,324 2 1 1


266 0


626 362


PM–EM (particle)


52,629 52,827 2,865


51,175 2,120 0


1,670 1,386 2,447 424 212 717 187


Particle (at%)


Correction Based on Removing Fe


FePM/ FeM


31.20 0.003 31.32 1.70


30.34 1.26 0


0.99 0.82 1.45 0.25 0.13 0.43 0.11


Expected Matrix


8,221 12


53,622 0


117


3,511 2 1 1


281 0


661 382


PM–EM (particle)


52,190 52,827 0


51,175 2,114 −187 1,670 1,386 2,447 409 212 682 167


Particle (at%)


31.61 32.00 0


31.00 1.28


−0.11 1.01 0.84 1.48 0.25 0.13 0.41 0.10


The table shows both the “Co correction” and “Fe correction” routines. The expected matrix in the precipitate+matrix atoms can be calculated based on the CoPM/CoM or FePM/FeMratio for “Co correction” and “Fe correction” routines, respectively. The minus value for the Co content in the “Fe correction” is due to the fact that Z-phase can dissolve some little Fe. PM, precipitate+matrix atoms; EM, expected matrix in the matrix+precipitate atoms.


Table 3. The Chemical Composition (in at%) of a Z-Phase Precipitate Obtained From the Z–Nb Trial Steel Aged for 3,000 h at 650°C. Fe


Ni Z-phase 1.96 0.09 Co 0.03 35.69


Cr W Nb 0.86


precipitate plus matrix composition (Table 2). At this point, using the built-in peak deconvolution tool in IVASTM allows us to solve peak overlap issues. By considering the fact that there is almost no Co in Z-phase (see Table 3), that Co is not enriched in the matrix–precipitate interface, and that Co has a uniformdistribution in the matrix (see Figs. 3a, 3b), one can subtract the Co content, and proportionally other alloying elements in the matrix, from the “precipitate plus matrix” composition. The remaining atoms belong to the precipitate, and hence the composition of the preci- pitate is obtained. A similar technique was first used by Fischmeister et al., 1988 to study the composition of small precipitates in high-speed steels using atom probe field ion microscopy. In case of very small precipitates, the number of Co


atoms is low and consequently large errors could be intro- duced to the composition. Thus, one can deduce the matrix composition based on the “Fe correction”, meaning that the Fe and proportionally other elements are removed from the “precipitate plus matrix” composition. By considering the fact that Z-phase can dissolve 1–3 at% Fe (see Table 3), a small systematic error in the composition was introduced. The minus value for the Co content in the “Fe correction” method is due to the small solubility of Fe in Z-phase. However, as can be seen in Table 2, there is a good agreement between the compositions obtained by “Co correction” and “Fe correction”.


Ta V 30.13 0.13 0.49 1.61 28.85


C B N Mn 0


0.11 In Figure 4, the composition of a precipitate obtained


from the “Fe correction” routine is presented for the trial steel aged for 24 h at 650°C. Note that the composition varies slightly between the iso-concentration surface value of 50 and 30. Iso 50 shows the composition of the core of the precipitate, whereas iso 30 contains both core and shell of the precipitate. The graph shows that the Cr concentration in the shell of the precipitate is higher compared with the core of the precipitates.


Figure 4. The composition of a precipitate in the trial steel aged for 24 h at 650°C obtained using different iso-concentration values and the “Fe correction” technique. The non-visible error bars (1 SD) are smaller than the data point symbols.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284