search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Understanding of Capping Effects 331


Previous reports have given details of the inhomogeneous temperature distribution at the surface of tips made of different materials, such as silicon (Koelling et al., 2011), GaSb (Muller et al., 2012) and MgO (Seol et al., 2016), which induces the asymmetry in the evaporation behavior between the two sides. Afterfurther APTanalysistocollect another~106 atoms, Rlaser = 68nmwas still 17-nm larger thanRshadow = 51nm.The evaporation field of a material is inversely proportional to its radius of curvature (under the assumption that the tip has been subjected to field evaporation), so to compare the field difference across the apex of the tip during analysis, we calculated Rlaser/ Rshadow; it dropped from 1.55 down to 1.33 during the analysis. This result suggests that the difference in the field strength between the laser side and the shadow side can be reduced as APT measurement progresses. This effect can be interpreted by uniform laser-induced heat distribution on the tip surface (Vella et al., 2011).


Ni-Capped LAO Tips


To avoid the laser-driven uneven temperature distribution at the tip surface, the tip was capped with a 20-nm thick Ni layer. Contour maps showing the 2D distribution of time of flight in a selected volume without capping (Fig. 2a) and with Ni capping (Fig. 2b) demonstrate that the greater heating on the laser- illuminated side can be avoided by the introduction of a Ni-capping layer with high thermal diffusivity. Comparison


reduced the differences in time of flight between laser and shadow sides. This reduction is due to the homogeneous heat distribution in the entire surface regions, which can be achieved because the thermal conductivity is higher in the metal-capping layer than in the bulk oxides. Therefore, the metal-capping layer strongly affects the path of laser-induced heat during laser-pulsed APT. The overall sequences of field evaporation of Ni-capped


LAO were observed using stepwise analysis of APT with TEM, as shown in Figure 3. The TEM images were taken after APT data sets of about 0.5 million atoms had been collected. After collecting ~106 atoms (stage 2), Rlaser was ~32nm and Rshadow was ~27 nm. Hence, the difference was ~5 nm, and Rlaser/Rshadow was ~1.19, both of which are smaller than for uncapped LAO tips (Fig. 1). This result


of La3+ peaks in mass spectra acquired from the incident laser and shadow side of an uncapped tip (Fig. 2c) demonstrated asignificant peak shift and delayed evaporation on the shadow side, whereas the peak shift of the La3+ peaks from Ni-capped tips is almost negligible (Fig. 2d). In general, due to strong laser–matter interaction, ions evaporated sooner on the incident laser side than on the shadow side. However, on the shadow side, transverse heat propagation is needed, so thermal activation is delayed by a few nanoseconds; this delay results in a long thermal tail in the mass spectrum, and deteriorates the mass resolution. The Ni-capping layer on the LAO tips significantly


Figure 2. Contour maps of selected volumes in LaAlO3 samples (a) without capping layer, and (b) with Ni-capping layer. c: Mass spectra of La3+ peaks emitted from uncapped oxide, and (d) mass spectra of La3+ peaks emitted from Ni- capped oxide from three different regions. Time of flight (TOF) of La3+ (blue, short TOF; red, long TOF). Arrow—laser direction.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284