search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
258 Michal Dagan et al.


position of an atom protruding from the surface of the sample. It is created by thousands of imaging gas atoms ionized at this position and projected by the field onto the phosphor screen. The crystallographic nature of the sample is clearly reflected in the image. A well-defined pole structure is apparent with a symmetry characteristic to the BCC tungsten lattice, which can be indexed appropriately. The imaging and evaporation sequence of the atoms is


fundamental to the reconstruction procedure. The terrace patterns are created as a result of the higher electric field generated above the more exposed surface sites at kink positions around the poles. Outer terrace atoms protrude to a greater extent than inner plane atoms, therefore higher gas ion current will be generated at these locations, giving brighter imaging and desired surface contrast. As the eva- poration of constituent atoms progresses, the outer terrace is removed first due to the higher electric field, exposing the inner plane atoms for imaging. The layer-by-layer field eva- poration process is demonstrated in Figure 1b, and in the Supplementary Videos 1 and 2.


Supplementary Videos 1 and 2


Supplementary Videos 1 and 2 can be found online. Please visit journals.cambridge.org/jid_MAM.


3D RECONSTRUCTION ALGORITHM


The reconstruction algorithm consists of the following key steps: first, atomic positions are identified automatically across all images. Next, a tracking algorithm is implemented in order to identify the same atom as it appears in several images across the data set. Finally, the relative crystallographic plane of each atomis determined, completing the coordinates needed to create the final 3D reconstruction. These analysis stages are discussed in details in the following sections.


Gaussian Filter (GF) and Automated Detection of Atomic Coordinates In the first stage of the process, a GF is applied to each digital image to remove high frequency noise. The filter used is 2 + y - h


given by GF=exp - x - w 2


ðÞ ðÞ ,where w, h correspond 2


2 2σ2 As the imaging through the depth of the specimen


continues, the repeating pattern provides a distinct metric as required for the automatic detection of the number of planes evaporated within a stack of FIM images. Figure 1c presents the integrated intensity measured from the center pixels of the [2,2,2] pole across the first 500 consecutive FIM images. Due to the imaging sequence outlined in Figure 1b, each crystallographic layer will first exhibit low intensity in the middle of the pole, followed by the sequential imaging of atoms at the center of the pole, corresponding to the sudden increase in intensity in Figure 1c. Once the final atoms are evaporated, and a lower layer is exposed to the surface, the intensity at the center of the pole drops again. This drop in intensity is usually sharp, as the final three atoms of a plane tend to field evaporate almost simultaneously, or at least within a time delay that the experiment cannot resolve. Hence, each cycle of intensity intervals as shown in


Figure 1c represents the imaging and complete evaporation of a crystallographic layer. From this plot it can be concluded that in the first 500FIM images, six [2,2,2] planes are imaged, and five of them have been fully evaporated. From the intensity drop points on the plot, the final FIM image in the sequence that corresponds to a particular plane can be determined, that is, one image before point labeled 4 in the example in Figures 1b and 1c. As the images are taken at a constant rate, the width of each intensity interval corre- sponds to the evaporation time of each plane. This will evolve through the experiment due to changing field condi- tions as the shape of the specimen evolves.


to the width and height dimensions (in pixels) of the image, respectively, and σ determines the width of GF, which here is set to 40. The atomically resolved poles of interest are then selected and cropped out to reduce the size of the data and increase calculation speed. In this study, the steps compris- ing the 3D FIM reconstruction are demonstrated on the [2,2,2] pole, as it evolves on the atomic scale across 7771FIM images. However, the process can be applied to all poles that exhibit atomic resolution and where the evaporation of atoms can be highly controlled. Next, within each FIM image the intensity values of all


pixels are scanned and the coordinates of the local intensity maxima are identified, as marked by the black dots in Figures 2a and 2b (a demonstration of this step on a larger portion of the data can be seen in Supplementary Video 1). These maximum intensity pixels represent coordinates of all atoms appearing along the stack of images. Note that a threshold value is defined for the intensity peaks to be identified as atoms to avoid false identification due to remaining noise. (In this particular study the threshold was set at ~1.5 times the average intensity of background pixels.) As can be seen in Figure 2a, because of this threshold, not all atoms on this image have been positively identified. The unidentified atoms are marked manually in Figure 2a with white circles for clarity. Local field effects must be taken into consideration here, as these are responsible for atoms being imaged with different intensities. A higher field will result in an atom imaging more brightly, and will also increase the probability of evaporation for that atom. Thus, atoms are usually imaged with the highest intensity directly before evaporation. The evaporation process continues from the image in Figure 2a to the point in time represented by Figure 2b. The brightly imaged atoms in Figure 2a have evaporated, as indicated by the red circles in Figures 2a and 2b. Subsequent to the evaporation of these atoms, the intensity of the unidentified atoms increases above the identification threshold. Therefore, although not all atoms will be positively identified across all images inwhich they appear, all atomswill be identified eventually before their evaporation.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284