Effect of Cu on Nanoscale Precipitation Evolution 359
MILLER, M.K. (2000b). Atom probe tomography: Analysis at the atomic level. In Data Representations and Analysis, pp. 158–160. New York, NY: Kluwer Academic/Plenum Publishers.
MILLER, M.K. & KENIK, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10, 336–341.
OTHEN, P.J., JENKINS, M.L. & SMITH, G.D.W. (1994). High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philos Mag A 70,1–24.
PING, D.H., OHNUMA, M., HIRAKAWA, Y., KADOYA,Y. & HONO,K. (2005). Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel. Mater Sci Eng A 394, 285–295.
SCHNITZER, R., SCHOBER, M., ZINNER,S.&LEITNER,H. (2010). Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel. Acta Mater 58, 3733–3741.
SEETHARAMAN,V., SUNDARARAMAN,M. & KRISHNAN,R.(1981). Precipitation hardening in a PH 13-8 Mo stainless steel. Mater Sci Eng 47,1–11.
TAILLARD,R.&PINEAU, A. (1982). The precipitation of the intermetallic compound NiAl in Fe-19wt.% Cr alloys. Mater Sci Eng 54, 209–219.
TROTTER,G., RAYNER,G., BAKER,I.&MUNROE, P.R. (2014). Accelerated precipitation in the AFA stainless steel Fe-20 Cr-30 Ni-2 Nb-5 Al via cold working. Intermetallics 53,120–128.
VAUMOUSSE,D., CERZO,A.&WARREN,P.J.(2003). A procedure for quantification of precipitate microstructures from three- dimensional atom probe data. Ultramicroscopy 95, 215–221.
WANG, X.J., SHA, G., SHEN,Q. & LIU, W.Q. (2015). Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel. Mater Sci Eng A 627, 340–347.
WEN, Y.R., HIRATA,A., ZHANG, Z.W., FUJITA,T., LIU, C.T., JIANG,J.H. & CHEN, M.W. (2013). Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5 Cu-1.5 Mn-4.0 Ni-1.0 Al multicomponent ferritic alloy. Acta Mater 61, 2133–2147.
YEN, H.W., CHEN, P.Y.,HUANG, C.Y. & YANG, J.R. (2011). Interphase precipitation of nanometer-sized carbides in a titanium- molybdenum-bearing low-carbon steel. Acta Mater 59, 6264–6274.
ZHANG, Z.W., LIU, C.T., MILLER, M.K., WANG, X.L., YUREN, W., FUJITA, T., HIRATA, A., CHEN, M.W., CHEN,G. & CHIN, B.A. (2013). A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci Rep 3, 1327–1332.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284