search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
374 Jonathan M. Hyde et al.


Atomistic simulations contain the position and type of all atoms, therefore, an analysis of density, size, and composition applied directly to simulated results cannot be directly compared with APT results. The data (atomic positions and types) should at least be treated similarly to what has been done in this work (Methodology section) in terms of lateral resolu- tion and detection efficiency, so as to mimic the effect of APT. Indications about the best way to do so, depending on the APT technique, should be given by experimentalists. Moreover, the limitations of the analysis methods (e.g., the overestimation of the size of small clusters using MSM, or its underestimation using IPM) should be used as a criterion to judge the comparison between simulation and experiments. Ideally, precise protocols should be deduced on how to treat simulation data, in order for the comparison with APT experiments to be performed on equal footing.


CONCLUSIONS


The aim of this work was to provide insight into the limita- tions and uncertainties associated with reported APT data, which would be useful both to the atom probe community and also to modelers. Simulations of microstructural data, which take into account estimates of common experimental artifacts associated with APT (reduced detection efficiency, positioning uncertainty, and local magnification effects), were performed. A simple method for modeling local magnification effects was proposed and it was shown to be effective in accounting for the observed increased density of atoms in solute clusters in experimental data. The resulting simulated microstructures have been


analyzed using two algorithms, the MSM and the IPM. The results show that for the identification of clusters ≳1 nm, both MSM and IPM work extremely well, provided that the parameters are carefully chosen. Detection of clusters with a radius of ~0.5nm is possible, but care is needed interpreting quoted compositions. Further work on core shell structured clusters is underway and will provide additional insight on the capability of methodologies used to characterize clusters observed in atom probe data. Recommendations will be developed which, if adopted,


will enable inter-comparison of results between different labs, enabling trends in microstructural development to be more readily observed, and provide information that can be directly used to support calibration of models from the modeling community.


ACKNOWLEDGMENTS


This work was part-funded under the EU FP7 NUGENIA+ project. Grant number 604965.


REFERENCES AUGER, P., PAREIGE, P., AKAMATSU,M. & BLAVETTE,D. (1995). APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels. J Nucl Mater 225, 225–230.


BLAVETTE, D., VURPILLOT, F., PAREIGE,P.&MENAND, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145–153.


CARTER, R.G., SONEDA, N., DOHI, K., HYDE, J.M., ENGLISH, C.A. & SERVER, W.L. (2001). Microstructural characterization of irradiation-induced Cu-enriched clusters in reactor pressure vessel steels. J Nucl Mater 298, 211–224.


CEREZO,A.&DAVIN, L. (2007). Aspects of the observation of clusters in the 3-dimensional atom probe. Surf Interface Anal 39, 184–188.


GAULT, B.,MOODY, M.P., CAIRNEY, J.M. & RINGER, S.P. (2012). Atom Probe Microscopy. New York: Springer.


HEINRICH, A., AL-KASSAB,T. & KIRCHHEIM, R. (2003). Investigation of the early stages of decomposition of Cu0.7at.% Fe with the tomographic atom probe. Mater Sci Eng A353,92–98.


HUANG, H., RADIGUET, B., TODESCHINI, P., RAINASSE, C., CLÉMENDOT,F. &PAREIGE, P. (2014). Influence of Cu and Ni levels on the microstructural evolution of French reactor pressure vessel steels. Proc Fontevraud 8.


HYDE, J.M. & ENGLISH, C.A. (2001). An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. Mat Res Soc Symp. Proc 650, R6.6.1–R6.6.12.


HYDE, J.M., MARQUIS, E.A., WILFORD, K.B. & WILLIAMS, T.J. (2011). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111, 440–447.


JÄGLE, E.A., CHOI, P.-P. & RAABE, D. (2014). The maximum separation cluster analysis algorithm for atom-probe tomography: Parameter determination and accuracy. Microsc Microanal 20, 1662–1671.


KOLLI, R.P. & SEIDMAN, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13, 272–284.


LEFEBVRE, W., VURPILLOT,F.&SAUVAGE, X. (2016). Atom Probe Tomography – Put Theory Into Practice. Elsevier.


MARQUIS, E.A. & HYDE, J.M. (2010). Atomic scale analysis of solute behaviours by atom-probe tomography. Mater Sci and Eng R Reports 69,37–62.


MILLER, M.K. (2000). Atom Probe Tomography Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.


MILLER, M.K., CEREZO, A., HETHERINGTON, M.G. & SMITH, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford Science Publications.


MILLER, M.K. & HETHERINGTON, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442–449.


MILLER, M.K. & RUSSELL, K.F. (2007). Embrittlement of RPV steels: An atom probe tomography perspective. J Nucl Mater 371, 145–160.


MILLER, M.K., RUSSELL, K.F., KOCIK,J. & KEILOVA, E. (2000). Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences. J Nucl Mater 282,83–88.


MILLER, M.K., RUSSELL, K.F., SOKOLOV, M.A. & NANSTAD, R.K. (2007). APT characterization of irradiated high nickel RPV steels. J Nucl Mater 361, 248–261.


MORLEY, A., SHA, G., HIROSAWA, S., CEREZO,A.& SMITH, G.D.W. (2009). Determining the composition of small features in atom probe: BCC Cu-rich precipitates in an Fe-rich matrix. Ultramicroscopy 109, 535–540.


ODETTE, G.R. (1995). Radiation induced microstructural evolution in reactor pressure vessel steels. Mat Res Soc Symp Proc 373, 137–148.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284