search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 329–335, 2017 doi:10.1017/S1431927617000149


© MICROSCOPY SOCIETY OF AMERICA 2017


Understanding of Capping Effects on the Tip Shape Evolution and on the Atom Probe Data of Bulk LaAlO3 Using Transmission Electron Microscopy


Chang-Min Kwak,1 Young-Tae Kim,1 Chan-Gyung Park,1,2 and Jae-Bok Seol2,*


1Department of Materials Science and Engineering, POSTECH, Pohang 790-784, South Korea 2National Institute for Nanomaterials Technology (NINT), POSTECH, Pohang 790-784, South Korea


Abstract: Two challenges exist in laser-assisted atom probe tomography (APT). First, a drastic decline in mass-resolving power is caused, not only by laser-induced thermal effects on the APT tips of bulk oxide materials, but also the associated asymmetric evaporation behavior; second, the field evaporation mechanisms of bulk oxide tips under laser illumination are still unclear due to the complex relations between laser pulse and oxide materials. In this study, both phenomena were investigated by depositing Ni- and Co-capping layers onto the bulk LaAlO3 tips, and using stepwise APT analysis with transmission electron microscopy (TEM) observation of the tip shapes. By employing the metallic capping, the heating at the surface of the oxide tips during APT analysis became more symmetrical, thereby enabling a high mass-resolving power in the mass spectrum. In addition, the stepwise microscopy technique visualized tip shape evolution during APT analysis, thereby accounting for evaporation sequences at the tip surface. The combination of “capping” and “stepwise APT with TEM,” is applicable to any nonconductors; it provides a direct observation of tip shape evolution, allows determination of the field evaporation strength of oxides, and facilitates understanding of the effects of ultrafast laser illumination on an oxide tip.


Key words: LaAlO3, metallic capping, atom probe tomography, transmission electron microscopy, correlative analysis


INTRODUCTION


Atom probe tomography (APT), which has been sig- nificantly developed over the past decade, allows accurate three-dimensional (3D) positioning of atoms with near- atomic resolution and identification of the chemical nature of each atom in a material system (Geiser et al., 2007; Kelly & Larson, 2012). APT was used to analyze the chemistry of pure metals or metallic engineering alloys in which solute or trace elements segregate to material’s inter- nal structural defects (Blavette et al., 1999; Miller, 2006), interfaces (Guo et al., 2014; Seol & Kim, 2016), or pre- cipitates (Knipling et al., 2007; Seol et al., 2013; Yao et al., 2016). However, the development of laser-assisted APT has widened the field of application to include nonconductive


materials and heterogeneous structures including NiO thin films (Yoon et al., 2008) and SiO2 insulators (Kwak et al., 2016). Moreover, some outstanding observations have been reported, including the discovery that the bandgap in an insulator approaches zero in a high field, so the insulator becomes essentially metallized (Silaeva et al., 2014). The physical mechanisms that explain the field evaporation in nonconductive materials with laser-pulsed APT include photoionization and thermally induced evaporation


*Corresponding author. jb_seol@postech.ac.kr Received June 29, 2016; accepted January 15, 2017


(Vurpillot et al., 2007; Marquis et al., 2010; Vella et al., 2011; Kelly et al., 2014; Silaeva et al., 2014). However, the apex of the tip becomes severely asym-


metric during APT analysis as a result of inhomogeneous heating of the side illuminated by the laser (Houard et al., 2011; Koelling et al., 2011). This phenomenon leads to an asymmetric field evaporation or a difference in the tip shape between the laser-irradiated side and the opposite side (shadow side) when using relatively high laser energies. The ions emitted from the shadow side need a few nanoseconds to become thermally activated, due to the low thermal dif- fusivity of oxide materials. As a result, the field evaporation of the shadow side is delayed, leading to a lowering of the mass-resolving power in the mass spectrum. To avoid this laser-induced asymmetric evolution of


APT tips, the needle-like tips can be metal capped to increase the uniformity of heat flow in the entire surface regions (Larson et al., 2013). More recently, our previous results demonstrated that the use of Ni-, Co-, and Ag-capping layers on MgO oxide tips improved the mass-resolving power and the signal-to-noise ratio, and also reduced the number of multiple hit events (Seol et al., 2016). Specifically, the Ag-capping layer profoundly improved the reliability of APT data from bulk MgO, and we suggested that the metal capping on bulk oxide tips leads to fast heat diffusion. However, experimental evidence to explain the function of such capping effects on other oxide materials is lacking, and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284