search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Effect of Cu on Nanoscale Precipitation Evolution 351


Table 1. Chemical Composition of the Experimental Model Alloys (wt%).


Model Alloys Fe–NiAl


Fe–NiAl–Cu Ni


3.26 3.25


Al


1.07 1.09


Cu —


1.63 Fe


Bal. Bal.


Thereportedhardnesswas theaverage valueofseven mea- surements from each sample. Tensile tests were performed using anMTSCMT5205 machine (MTS, Songjiang, Shanghai, China) at a strain rate of 10−3 s−1. The dog bone-shaped tensile samples with a gauge length of 25mm, awidth of 3.2mmand a thickness of 1.6mm, were cut by electro-discharge machining. Thesurfaces of thetensile sampleswerepolisheddowntoa


2,500-grit SiC paper, and then electro-polished to a mirror finish to eliminate scratches and residual stresses. Fracture surfaces of the tensile-tested specimens were examined by scanning electron microscopy. The yield strength was deter- mined using the 0.2% offset plastic strain method. Specimens for APT experiments were prepared by a


two-stage electro-polishing method (Miller, 2000a). The APT analyses were performed in a LEAP 4000 HR (Cameca, Madison, WI, USA) at 50K with a target evaporation rate of 0.5%, a voltage pulse fraction of 20%, and an ultra-high vacuum of ∼10−9 Pa. The pulse repetition rate was 200 kHz. Data reconstructions and analyses were conducted with IVASTM 3.6.8 software. The maximum separation algorithm (Vaumousse et al., 2003) was employed to identify NiAl precipitates and to work out their number density and size distribution. The NiAl precipitates were present as individual particles in the alloys, using Ni and Al as target solute atoms, we selected a separation distance (dmax)of 0.4 nm, and a minimum cluster size of Nmin = 40 solute atoms by using the envelope method (Miller, 2000b; Miller& Kenik, 2004). The mean equivalent radius of precipitates, rp, was calculated using equation (1) (Kolli & Seidman, 2007):


rp = sffiffiffiffiffiffiffiffiffi 3


3nΩ 4πf


; (1)


where the atomic volume, Ω, is 1.178×10−2nm3 for body- centered cubic (bcc) Fe, and ƒ the estimated detection efficiency of the multichannel plate detector in the LEAP system, which is 0.37. The value of n is the number of atoms detected within each precipitate determined by the maximum separation method. As the Fe and Cu contents in these precipitates are not taken into account, the calculation presumably underestimates the equivalent radius of each precipitate.


RESULTS


Mechanical Properties The variation ofmicrohardness as a function of aging time for the Fe–NiAl and Fe–NiAl–Cu alloys are shown in Figure 1. The Fe–NiAl alloy shows a hardness of ~186HV in the


Figure 1. Microhardness as a function of aging time at 500°C for the Fe–NiAl and Fe–NiAl–Cu alloys.


Figure 2. Room temperature tensile stress–strain curves for the as-quenched and 4-h-aged Fe–NiAl and Fe–NiAl–Cu alloys.


as-quenched (AQ) condition. At the aging temperature of 500°C, the hardness decreases slightly in the initial stage of aging. Then the hardness gradually increases and reaches the peak value of ~255HV after 256 h, which is ~69HV higher than that of the AQ sample. With increasing aging time, the hardness decreases due to an over-aging effect. Owing to the solid solution hardening of Cu, the hardness of the Fe–NiAl– Cu alloy in the AQcondition is ~32HVhigher than that of the Fe–NiAl alloy. Upon aging, the Fe–NiAl–Cu alloy shows a significant increase in hardness at the first 0.5h aging period. Subsequently, the Cu addition shifts the hardness peak toward shorter periods of time. The hardness increases to the peak hardness value of ~337HV after 2h aging, followed by a hardness plateau from 2 to 32h. In addition, Cu plays an important role in enhancing the age-hardening ability of the Fe–NiAl–Cu alloy, resulting in a pronounced increase (~82HV) of the peak hardness, as compared with the Fe–NiAl alloy. The tensile engineering stress–strain curves of the


Fe–NiAl and Fe–NiAl–Cu alloys are presented in Figure 2, and the yield strength, ultimate tensile strength, and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284