search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Automated Atom-By-Atom 3D FIM Reconstruction 259


Figure 2. a,b: Time-ordered FIM images of the [2,2,2] pole. A Gaussian filter has been applied to remove high fre- quency noise. Intensity maximum points are identified and marked in black dots. a: The intensities of atoms marked in white circles are below the set threshold. b: As the evaporation process progresses, the atoms marked in red circles in (a) have evaporated, and the ones marked in white circles are now imaging with intensities above the identification threshold. c: All atomic coordinates identified on the first 80 images, corresponding to the evaporation of the first crys- tallographic layer. The x–y coordinates are set by the pixel coordinates, and the z coordinate at this stage represents the serial number of the image in which every peak was identified.


detected in the first 80 FIM images, corresponding to the first crystallographic plane to evaporate from the surface of the specimen. To create the plot, the measurement of atomic positions seen in Figures 2a and 2b is repeated across the first 80 images, and the detected atomic coordinates are effec- tively stacked in the 3D plot. The z coordinate in Figure 2c represents the serial number of the image in which the atoms were identified. For clarity only the first plane is shown here.


Figure 2c plots the coordinates that were automatically


Consolidating Contributions From Individual Atoms Across the Sequence Once all intensity peaks have been identified across the sequence of images, the next step is to separate these signals into contributions from distinct atoms. The 3D “point cloud” of information to be analyzed (seen in Fig. 6a) at this stage represents every atom detected across all images, but is not the list of atom coordinates for the final reconstruction. Each atom will typically appear in multiple images from the time that it is first exposed at the surface until it is ultimately evaporated. In fact, the number of images in which each atom appears is dependent on its local field conditions and varies from atom to atom. The association of a collection of identified intensity


positions and their measured position from one image to the next can thus change. The imaging intensity of each atom can also change from image to image, dropping below the threshold for identification at times. These changes (dis- cussed in further detail in the following sections) make it necessary to use an adjustable tracking algorithm to identify and group together intensity points describing the same atom across different images. First, peaks from all images are separated according to


peaks to a specific individual atom is carried out through analysis of the relative position of each peak both within the image plane and across the sequence of images. Under the influence of instantaneous field conditions, the imaged positions of atoms may shift from their original recorded


their x–y spatial coordinates (in the image plane). To take into account the displacement of atoms from image to image, a calibration of the imaged size of atoms in pixels is carried out on each image, for each identified intensity peak coor- dinate. This size is determined here by the edge of a circular area surrounding identified atomic coordinate where peak intensity drops to 0.875 of the respective measured maxi- mum. The defined “resolution” distance (taken as half the atomic diameter) provides a method for accounting for small displacements in the coordinates of the imaged atoms throughout a series of images. Each atomic coordinate is compared, using this calibration distance, with all atomic coordinates found on the consecutive image. Intensity peaks that are found to be positioned within the defined x–y “atom-sized” region will be grouped together at this stage, as demonstrated in Figure 3a. Each color represents a group of intensity points associated to the same atom-sized x–y region on the images. Note that atomic positions are compared between adjacent images, and not with the initial position in which the atom was first recorded. This is because the image of atoms can gradually move a distance that is comparable


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284