search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
358 Qin Shen et al. With regard to Δσcoherency in the two alloys, ɛ, ƒ, and R


are variables. The number density of the Fe–NiAl–Cu alloy is far larger than that of the Fe–NiAl alloy, so the volume fraction of the Fe–NiAl–Cu alloy is far larger than that of the Fe–NiAl alloy. The bcc Cu has a lattice constant that is larger than the lattice constant of the B2 NiAl phase (Wen et al., 2013), leading to a larger ɛ of the Fe–NiAl–Cu alloy. Therefore, the Δσcoherency of the Fe–NiAl–Cu alloy is larger. As a result, after aging for 4 h, the increment of strengthen- ing of the Fe–NiAl–Cu alloy is larger than that of the Fe–NiAl alloy.


CONCLUSIONS


In this paper, we presented results on the aging character- istics of precipitates and mechanical properties of the Fe–NiAl and Fe–NiAl–Cu alloys. The effects of Cu on the evolution of precipitation and the mechanical properties were discussed. The following conclusions are drawn:


1. The addition of Cu plays an important role in increasing the number density of NiAl nanoparticles, which is attributed to the fact that Cu increases the nucleation rate of NiAl nanoparticles by increasing the chemical driving force and decreasing the interfacial energy.


2. The growth and coarsening rate of core–shell precipitates in the Fe–NiAl–Cu alloy is lower than that of monolithic NiAl precipitates in the Fe–NiAl alloy, which is caused by the slower diffusion rate of Cu.


3. With increasing aging time to 128 h, the core–shell precipitates of the Fe–NiAl–Cu alloy decomposed into NiAl nanoparticles and Cu nanoparticles, side-by-side.


4. With the co-precipitation of Cu-rich and NiAl precipi- tates, the peak hardness of the Fe–NiAl–Cu alloy is higher than that of the Fe–NiAl alloy. By increasing the chemical strength and coherency strength, the addition of Cu improves the precipitation strength.


ACKNOWLEDGMENT


This work was supported by Steel Joint Funds of the National Natural Science Foundation of China (No. U1460103), China Academy of Engineering Physics Joint Funds of National Natural Science Foundation of China (No. U1530115), Key project of Shanghai Science and Technology Commission (12JC1404000), and National Key Research and Development Program of China (No. 2016YFB0700401).


REFERENCES


AARONSON, H.I. & LEGOUES, F.K. (1992). An assessment of studies on homogeneous diffusional nucleation kinetics in binary metallic alloys. Metall Trans A 23, 1915–1945.


ARGON, A.S. (2008). Strengthening Mechanisms in Crystal Plasticity. Oxford, UK: Oxford University Press.


BEI, H., SHIM, S., PHARR, G.M. & GEORGE, E.P. (2008). Effects of pre- strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater 56, 4762–4770.


GAGLIANO, M.S. & FINE, M.E. (2004). Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels. Metall Mater Trans A 35, 2323–2329.


GOODMAN, S., BRENNER,S. & LOW, J. R. (1973). An FIM-atom probe study of the precipitation of copper from iron-1.4 At. Pct copper. Part I: Field-ion microscopy. Metall Mater Trans 4, 2363–2369.


GUO, Z., SHA,W.&VAUMOUSSE, D. (2003). Microstructural evolution in a PH13-8 stainless steel after ageing. Acta Mater 51, 101–116.


HATTESTRAND, M., NILSSON, J., STILLER,K.&LIU, P. (2004). Precipitation hardening in a 12% Cr–9% Ni–4% Mo–2% Cu stainless steel. Acta Mater 52, 1023–1037.


HAYASHI, T., SAROSI, P.M., SCHNEIBEL, J.H. & MILLS, M.J. (2008). Creep response and deformation processes in nanocluster- strengthened ferritic steels. Acta Mater 56, 1407–1416.


HELLMAN, O.C., RUSING,J.&SEIDMAN, D.N. (2003). Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199–205.


HELLMAN, O.C., VANDENBROUCHE, J.A., RUSING, J., ISHEIM,D.& SEIDMAN, D.N. (2000). Analysis of three-dimensional atom- probe data by the proximity histogram. Microsc Microanal 6, 437–444.


HOCHANADEL, P.W., ROBINO, C.V., EDWARDS, G.R. & CIESLAK, M.J. (1994). Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure. Metall Mater Trans A 25, 789–798.


HORING, S.,WANDERKA,N.&BANHART, J. (2009). The influence of Cu addition on precipitation in Fe-Cr-Ni-Al-(Cu) model alloys. Ultramicroscopy 109, 574–579.


HORNBOGEN,E. & GLENN, R.C. (1960). A metallographic study of precipitation of copper from alpha iron. Trans Metall Soc AIME 218, 1064–1070.


HUANG, S., GAO, Y., AN, K., ZHENG, L.L., WU, W., TENG,Z.& LIAW, P.K. (2015). Deformation mechanisms in a precipitation- strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta Mater 83, 137–148.


JIAO, Z.B., LUAN, J.H., MILLER, M.K., YUA, C.Y. & LIU, C.T. (2015). Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater 84, 283–291.


KAPOOR, M., ISHEIM, D., GHOSH, G., VAYNMAN, S., FINE, M.E. & CHUNG, Y.W. (2014). Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel. Acta Mater 73,56–74.


KOLLI, R.P. & SEIDMAN, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu Steel. Microsc Microanal 13, 272–284.


KOLLI, R.P. & SEIDMAN, D.N. (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu- based steel. Acta Mater 56, 2073–2088.


KUMAR, K.S., MANNAN, S.K. & VISWANADHAM, R.K. (1992). Fracture toughness of NiAl and NiAl-based composites. Acta Metall Mater 40, 1201–1222.


MARUYAMA, N., SUGIYAMA, M., HARA,T.&TAMEHIRO, H. (1999). Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels. Mater Trans JIM 40, 268–277.


MILLER, M.K. (2000a). Atom probe tomography: Analysis at the atomic level. In The Art of Specimen Preparation,pp. 28–36. New York, NY: Kluwer Academic/Plenum Publishers.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284