search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
True Atomic-Scale Imaging in Three Dimensions 219


Figure 11. Final three-dimensional (3D) automated reconstruction of over 2,000 tungsten atoms, 69 (222) planes, imaged across >7,000 images. Coordinates in the 2D images are converted to direct space coordinates by calibrating the average nearest-neighbor’s distance to its theoretical value.


over 7,000 FIM images of a tungsten specimen. Transfor- mation from image pixels to direct space spatial coordinates is made by calibrating the average nearest-neighbor distance, in pixels, to its theoretical value. Figure 11 displays a repre- sentative coordinate for each atom, but in fact the entire list of surface sites in which the atom was detected is measured for each atom, as well as its field-evaporation time and its intensity among all images. This information has the


potential of being the foundation of advanced analyses of the field-evaporation process and quantify directly problems known to affect APT data.


CONCLUSIONS


(with a smaller detection efficiency and spatial resolution) and finally TEM. Atomic-scale 3D reconstruction is, however, extremely time consuming, and is still far from being a routine technique. In this article,we have reviewed the path toward 3D spatial resolution using FIM from early 3D FIM micrographs to automated routine 3D reconstructions. The examples pre- sented herein deal with pure elements or dilute alloys, and the obvious next step is to include chemistry to apply the techni- ques developed to date to more realistic systems and have 3D FIM be the natural instrument to analyze routinely atomic- scale features in materials science and engineering.


ACKNOWLEDGMENTS


This work was partly funded by through project EMC3 labex DYNAMITE. F.V. would like also to thank W. Vandervorst


Achieving true atomic resolution in materials analysis, with a high detection efficiency, has evolved from a scientificchal- lenge to a realmaterials science need. BothTEMandAPThave pursed this goal, which was first achieved by FIM, then APT


REFERENCES


AKRÉ, J., DANOIX, F., LEITNER,H.&AUGER, P. (2009). The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy 109, 518–523.


ARMSTRONG, D.E.J., EDMONDSON, P.D. & ROBERTS, S.G. (2013). Effects of sequential tungsten and helium ion implantation on nano- indentation hardness of tungsten. Appl Phys Lett 102, 251901.


BAS, P., BOSTEL, A.,DECONIHOUT,B.&BLAVETTE,D. (1995). A general protocol for reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298–304.


BEAVAN,L., SCANLAN,R. & SEIDMAN, D. (1971). The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 1339–1350.


BRANDON, D.G. (1964). The accurate determination of crystal orientation fromfield ion micrographs. J Sci Instrum. 41,373–375.


CASTELL, M.R., MULLER, D.A. & VOYLES, P.M. (2003). Dopant mapping for the nanotechnology age. Nat Mater. 2, 129–131.


CAZOTTES, S.,VURPILLOT, F., FNIDIKI, A., LEMARCHAND, D., BARICCO,M. &DANOIX, F. (2012). Nanometer scale tomographic investigation of fine scale precipitates in a CuFeNi granular system by three-dimensional field ion microscopy. Microsc Microanal 18(5), 1129–1134.


and IMEC for providing some of the data provided here, and the international field emission society (IFES) for its support. D.N.S. would like to thank the Materials Science Center at Cornell University [National Science Foundation (NSF) funded] and the US Department of Energy for generous support that made possible his early pioneering experiments utilizing FIM and atom probe field-ion microscopy. A MITRE evaluative study of Materials Research Laboratory Programs (MTR 7764) rated DNS’s research programs for the years 1968–1977 among the top 20 most highly rated major achievements sponsored by the NSF in the area of materials science.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284