search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
New Atom Probe Tomography Reconstruction Algorithm for Multilayered Samples 249


Figure 2. a: Mean radius of curvature of a saddle surface. The 3D mean curvature inverse is defined as the average of the two principal radii of curvature inverses. On one hand, on a cross-section corresponding to the minimal radius of curvature, one would measure a negative radius. On the other hand, the measured radius would be positive on a cross- section corresponding to the maximal radius of curvature. Eventually, the mean radius of curvature is zero where the surface normal vector is drawn. b: Mean radius of curvature on a field emitter surface containing two layers (high field red layer and low field blue layer). The green arrow is the surface normal, and the two planes are orthogonal planes containing this normal. The vertical plane also contains the revolution axis (large black arrow). Due to the cylindrical symmetry of the emitter, the principal radii of curvature correspond to the so-called meridian (radius of the blue circle, in the plane containing the revolution axis) and parallel radius (radius of the purple arc of circle in the second plane, equals to the small black arrow length).


hyperbola (b>a), one obtains a nodoid (Fig. 1b). Thus, each layer surface is modeled by a piece of a Delaunay surface; in Figure 1c, the field evaporated surfaces of layer 2 and layer 3 are the piece of the unduloid filled in blue in Figure 1a and the piece of the nodoid filled in green Figure 1b, respectively. As the mean radius of curvature of those surfaces is directly related to the semi-axis length a (2a = R), the ratio of the a parameters between two successive layers equates to the inverse of the field ratio of the corresponding interface. In addition, from the tangential continuity condition (depicted by purple arrows in Fig. 1c), one can infer a direct relationship between the b parameters of successive layers. Eventually, the tangential continuity at the base of the field evaporated area (red arrow in Fig. 1c) unambiguously determines the set of surfaces representing the layer surfaces. We refer the reader to Rolland et al. (2015a) for the calculation details.Acomplete description of the tip morphology evolution during the evaporation can be obtain by repeating the operation for successive dz steps as illustrated in Figure 1d. Originally, a voronoï partition of the output (set of


points describing the successive emitter surfaces during the evaporation) was used to associate an evaporated volume to the successive steps. Here, we propose to compute this volume in a simpler manner. At each stage, corresponding to the removal of a material width dz on the tip axis is asso- ciated an evaporated volume dv: dv = πrV2dz, with rV the radial distance associated to the field of view θV seen by the detector (Fig. 3a). The formula may seem quite unusual as it is often assumed that the infinitesimal volume dv associated to the evaporation of a small material width dz is propor- tional to the sample surface analyzed area SA so that dv = SAdz. However, the latter is mathematically incorrect as


Figure 3. a:Definition of the evaporated volume associated to each step of the modeling. n is the surface normal corresponding to the field of view θV, and rV the associated radial distance. dz is the in depth increment between two successive surfaces computed in the model. The evaporated volume corresponding to this sur- face is assimilated to the volume 2.π.rV.dz of the orange cylinder. b: Example showing the inaccuracy of common evaporated volume evaluation. The evaporated volume (considering full field of view) corresponding to the depth z in the blue tip equates the red cylinder volume (2.π.R.z).


highlighted in the simple example Figure 3b. Indeed, the analyzed volume (filled in blue) is clearly given by πR2z (the volume of the cross-hatched cylinder), whereas SAz = 2πR2z. Obviously, the step dz has to be as small as possible to ensure an accurate evaporated volume evaluation. In prac- tical, dz has to be even smaller than the characteristic size of an atom to get the correct evolution of the tip morphology; indeed, as pointed out in Larson et al. (2012), there are


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284