search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
320 Björn Pfeiffer et al. ACKNOWLEDGMENTS


Financial support by the German Research Foundation (SFB 1073, TP C05) and the Graduate program for Energy Storage and Electromobility in Lower Saxony (GEENI) is gratefully acknowledged.


REFERENCES


BACH, S., FARCY,J. & PEREIRA-RAMOS, J.P. (1998). An electrochemical investigation of Li intercalation in the sol-gel LiMn2O4 spinel oxide. Solid State Ion 110, 193–198.


BAS, P., BOSTEL, A.,DECONIHOUT,B.&BLAVETTE,D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298–304.


DEVARAJ, A., COLBY, R., HESS, W.P., PEREA, D.E. & THEVUTHASAN,S. (2013). Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. J Phys Chem Lett 4, 993–998.


DEVARAJ, A., GU, M., COLBY, R., YAN, P., WANG, C.M., ZHENG, J.M., XIAO, J., GENC, A., ZHANG, J. G., BELHAROUAK, I., WANG, D., AMINE,K.&THEVUTHASAN, S. (2015). Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun 6, 8014.


ESCHER, C., LATYCHEVSKAIA, T., FINK, H.-W. & POHL, D.W. (2006). Direct evidence for conduction pathways in a solid electrolyte. Phys Rev. Lett 97, 136601.


GREIWE, G.-H., BALOGH,Z.&SCHMITZ, G. (2014). Atom probe tomography of lithium-doped network glasses. Ultramicroscopy 141,51–55.


HUANG, R., IKUHARA, Y.H., MIZOGUCHI, T., FINDLAY, S.D., KUWABARA, A., FISHER, C.A.J., MORIWAKE, H., OKI, H., HIRAYAMA,T. & IKUHARA, Y. (2011). Oxygen-vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles. Angew Chem Int Ed 50, 3053–3057.


KANAMURA, K., NAITO, H., YAO,T.&TAKEHARA, Z.-I. (1996). Structural change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6,33–36.


KARAHKA, M., XIA,Y. & KREUZER, H.J. (2015). The mystery of missing species in atom probe tomography of composite materials. Appl Phys Lett 107, 062105.


KELLY, T.F., VELLA, A., BUNTON, J.H., HOUARD,J, SILAEVA, E.P.,


BOGDANOWICZ,J. & VANDERVORST, W. (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18,81–89.


KESTEN,P., PUNDT,A., SCHMITZ, G., WEISHEIT, M., KREBS,H.U. & KIRCHHEIM,R. (2002).H- andDdistribution inmetallicmultilayers studied by 3-dimensional atom probe analysis and secondary ion mass spectrometry. JAlloy Compd 330–332,225–228.


KUCZA, W. (1999). Ionic description of intercalation in LixMn2O4 system. Solid State Ion 124, 125–131.


LARSON, D.J., FOORD, D.T., PETFORD-LONG, A.K., LIEW, H., BLAMIRE, M.G., CEREZO,A.&SMITH, G. D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287–293.


LEE, S., OSHIMA, Y., HOSONO, E., ZHOU, H., KIM, K., CHANG, H.M., KANNO,R. & TAKAYANAGI, K. (2013). In situ TEM observation of local phase transformation in a rechargeable LiMn2O4 nanowire battery. J Phys Chem C 117, 24236–24241.


LEE, S., OSHIMA, Y., HOSONO, E., ZHOU, H., KIM, K., CHANG, H.M., KANNO,R.&TAKAYANAGI, K. (2015). Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. ACS Nano 9, 626–632.


LI, G., YAMADA, A., FUKUSHIMA, Y., YAMAURA, K., SAITO, T., ENDO, T., AZUMA, H., SEKAI,K. & NISHI, Y. (2000). Phase segregation of LixMn2O4 (0.6<x<1) in non-equilibrium reduction processes. Solid State Ion 130, 221–228.


MAIER, J., PFEIFFER, B., VOLKERT, C.A. & NOWAK, C. (2016). Three-dimensional microstructural characterization of lithium manganese oxide with atom probe tomography. Energy Technol, 4, 1565–1574.


MILLER, M.K., CEREZO, A., HETHERINGTON, M.G. & SMITH, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.


MILLER, M.K., RUSSELL, K.F., THOMPSON, K., ALVIS,R. & LARSON, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428–436.


OHZUKU, T., KITAGAWA,M.&HIRAI, T. (1990). Electrochemistry of manganese dioxide in lithium nonaqueous cell: III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J Electrochem Soc 137, 769–775.


OUYANG, C., SHI, S., WANG, Z., HUANG,X.&CHEN, L. (2004). Experimental and theoretical studies on dynamic properties of Li ions in LixMn2O4. Solid State Commun 130, 501–506.


RODRÌGUEZ-CARVAJAL, J., ROUSSE, G., MASQUELIER,C.&HERVIEU,M. (1998). Electronic crystallization in a lithium battery material: Columnar ordering of electrons and holes in the spinel LiMn2O4. Phys Rev Lett 81, 4660–4663.


SANTHANAGOPALAN, D., SCHREIBER, D.K., PEREA, D.E., MARTENS, R.L., JANSSEN, Y., KHALIFAH,P. & MENG, Y.S. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148,57–66.


SCHMITZ,G,ABOUZARI,R,BERKEMEIER, F., GALLASCH, T., GREIWE, G., STOCKHOFF,T. & WUNDE, F. (2010). Nanoanalysis and ion conductivity of thin film battery materials. Z Phys Chem 224, 1795–1829.


SHIMAKAWA, Y., NUMATA,T. & TABUCHI, J. (1997). Verwey-type transition and magnetic properties of the LiMn2O4 spinels. J Solid State Chem 131, 138–143.


SILAEVA, E.P., ARNOLDI, L., KARAHKA, M.L., DECONIHOUT, B., MENAND, A., KREUZER, H.J. & VELLA, A. (2014). Do dielectric nanostructures turn metallic in high-electric DC fields? Nano Lett 14, 6066–6072.


SILAEVA, E.P., KARAHKA,M.&KREUZER, H.J. (2013). Atom probe tomography and field evaporation of insulators and semiconductors: Theoretical issues. Curr Opin Solid State Mater Sci 17, 211–216.


VAN EEKELEN, H.A.M. (1970). The behaviour of the field-ion microscope: A gas dynamical calculation. Surf Sci 21,21–44.


VELLA,A,MAZUMDER,B,DA COSTA,G&DECONIHOUT, B. (2011). Field evaporation mechanism of bulk oxides under ultra fast laser illumination. J Appl Phys 110, 044321.


YANG, W., ZHANG, G., LU, S., XIE,J.&LIU,Q. (1999). Electrochemical studies of Li/LixMn2O4 by using powder microelectrode. Solid State Ion 121,85–89.


ZHANG, K., HAN, X., HU, Z., ZHANG, X., TAO,Z.&CHEN, J. (2015). Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44, 605–834.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284