search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
392 B. Langelier et al. a


4.5 5


3.5 4


2.5 3


1.5 2


0.5 1


0 Electropolishing b


10 20 30 40 50


-50 -40 -30 -20 -10 0


Electropolishing FIB 0.8 Matrix Segregation 0.6 0.4 0.2 0.0 0 25 50 75 Distance (nm) Matrix Segregation


Figure 12. 1D concentration profile of Ga taken along the APT analysis direction (i.e. parallel to the long axis of the sample) from a FIB-prepared Fe-Mn-N martensite sample, analyzed by VP.


FIB


of N loss to be promoted by FIB preparation, two possible means are considered here: (i) ejection of N by ion collisions and (ii) diffusion of N to the sample surface. It is well known that FIB milling can cause damage to


Figure 11. Comparison of N concentrations in Fe-Mn-N martensite analyzed by VP, prepared by electropolishing and FIB (for 3D atom maps see Figures 5 and 14b, respectively). a: N concentrations measured by 1NN method; (b) normalized N concentration difference from electropolishing result.


samples required FIB preparation, in order to achieve site- specific analysis, the possible influence of FIB processing on the tips is examined. To compare, the N content in Fe–Mn– N samples prepared by electropolishing is analyzed. As seen by the results in Figure 11, a small decrease in the N con- centration of both the matrix and segregation components is observed for a FIB prepared sample, when compared with a sample prepared by electropolishing. It is noted that the decrease appears more significant for the matrix component than for the segregation component. These results confirm that someNloss can be attributed to FIB sample preparation. As a possible mechanism forNloss in the sample during


processing, it is considered that as a relatively mobile inter- stitial element, some N in the near-surface regions of the APT needle may combine and exit the martensite as an N2 gas molecule. Such a denitriding process may become pos- sible in high vacuum, where the N concentration in the environment surrounding the tip is essentially 0. The greater proportion of N loss in the matrix phase, as shown in Figure 11, is consistent with such a mechanism. While the diffusion rate of N in the segregation regions would undoubtedly be higher, it is possible that the N in those regions is stabilized by lattice defects. Conversely, N in the matrix would be more highly supersaturated, and have a greater driving force for outward diffusion. For this process


the near-surface regions of a sample, resulting in atom dis- placements, vacancy generation, and the implantation of Ga ions (Giannuzzi & Stevie, 2005; Volkert & Minor, 2007). These effects may provide N atoms with sufficient energy to be ejected from the sample. As most damage is directly associated with the impacting Ga ions, high Ga concentra- tions in the APT sample may be a strong indicator of FIB damage. A profile of the Ga concentration down the long axis of a tip for a FIB-prepared sample is given in Figure 12. This figure shows that the maximum Ga concentration is extremely low, as even at the tip apex it only rises to ~0.5 at.%. This concentration decays rapidly with depth, until ~15–20 nm, after which the Ga content is only present at background levels. Assuming the FIB milling to be oper- ating in the linear cascade regime (Giannuzzi&Stevie, 2005), there is the possibility that the collision cascades caused by the incident Ga ions affect N at greater depths than those reached by the Ga ions themselves; however, in a relatively dense material such as steel, the depth of the collision cas- cade should not be far greater than the Ga ion penetration depth. An approximation of the collision depth in the Fe– Mn–N martensite samples is made by modeling with the stopping and range of ions in matter (SRIM) software package (Ziegler, 2013). The ion dose-normalized results are plotted in Figure 13 for 1× 104Ga ions at 10 keV (energy of the final FIB processing step) into Fe-1.4 Mn (at.%) and incident angles of 90 and 15° to the specimen surface, representing orientations of the tip apex and tip shank rela- tive to the FIB. The calculation involves several assumptions in modeling the material, such as disregarding channeling effects (Volkert & Minor, 2007), but it is noted that the dis- tribution profile results for Ga penetration depth at 90° matches fairly well with the APT measurement in Figure 12 (i.e., a maximum penetration of ~15nm down the sample axis). The results for the collision cascade depicting recoil


100 125 150


Normalized N Concentration Difference (%)


N Concentration (at.%)


Ga Concentration (at.%)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284