search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
324 David R. Diercks et al.


Figure 1. Scanning electron microscopic images of milled tips for each of the depositions with lines indicating the inter- faces between the depositions and the silicon. The depositions are (a)Au, (b)Au+O2,(c)Co, (d) Fe, (e)Pd, and(f)Pt.


spectrum included peaks from both gold and silicon. The reason for this can be seen in comparing the evaporation fields of the twomaterials. In voltage pulsing, the evaporation field of gold is 60% greater than that of silicon (Tsong, 1978; Kellogg, 1983). Though the evaporation fields with the laser pulsing used here are not known, a similarly large disparity is expected. With a high evaporation field material on top of a low eva- poration fieldmaterial, it is possible to generate sufficient field for observing evaporation of the bottom material from the surface further down the tip before complete removal of the top layer (Marquis et al., 2011; Lee et al., 2014), especially with theseveredifferencein fields for these twomaterials.At higher laser energies, the relative contribution of the field to the eva- poration is decreased. However, even the highest laser energy and lowest applied bias attempted here did not prevent the silicon from also being removed during evaporation of the gold. This, along with the EDX data, suggests that this is a high purity deposition with a high evaporation field, likely approaching that of pure gold. As such, this deposition could be used as a capping layer for making APT specimens of very high evaporation field materials. Yet, the usefulness of this is somewhat mitigated by the need for flowing oxygen during deposition and a relatively slow deposition rate.


APT of Co


The APT analysis of the Co deposition was performed using laser energies from 7–60 pJ, which resulted in applied biases


of 4.6–1.4 kV. As shown in Table 2, there was little variation in the measured composition of the deposition over these analysis conditions. Some analyses were allowed to proceed all the way through the Co deposition and into the silicon with a smooth transition between the two phases as seen in Figure 3a. The mass spectrum from the bulk of a Co deposition run at 4.2–4.6kV and 7 pJ is shown in Figure 3b. The predominant species is Co++. In addition, the APT reconstructions indicate a homogeneous deposition with local Co variations of at most 5 at%. The evaporation field for this deposition was estimated


based on the charge state ratios (CSRs) observed for the Co+ and Co++ peaks from the different analyses. The different applied biases/laser energies provide a range of fields. Turning the applied bias into an estimated field requires adjustments based on the tip radius at each condition. Using the SEM images of the initial and final radii, the radius at each intermediate point can be estimated, similar to what was done elsewhere using TEM images (Diercks & Gorman, 2015). There are small changes in the flux and possibly the apex tangential discontinuity (sphere-to-cone ratio) (Larson et al., 2011) as the radius changes, which may affect the estimate of the field; however, the effects of these over the range of analysis parameters used is expected to be relatively small (Diercks & Gorman, 2015). The plot of relative fields shown in Figure 4a can then be compared with the expected Co ionization state curves (Kingham, 1982) to generate the absolute field values. Specifically, the point where an


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284