search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
242 Frédéric De Geuser and Baptiste Gault


EXPERIMENTAL ANDMODELING ASSESSMENT OF THE PROJECTION MODELS


An experimental assessment of the accuracy of the angular projection can be made by using either FIM images or desorption maps from an APT data set, if it bears enough crystallographic information such as poles or zone axis. This is easiest with pure metals. In the set of crystallographic poles shown in Figure 3, with their position on the detector, it is possible to directly compare the observed positions to the positions predicted by the projection models.


Distance Versus Angle


best fits for each pole considered as the projection center, as a function of the distance of that pole to the detector center. It can be seen that (1) the pseudo-stereographic model always predict a higher ICF, which arises in order to compensate for the nonlinearity; and (2) the pseudo-stereographic is very dependent on the chosen projection center, in contrast with the equidistant model. Figure 4c assesses the quality of the


Figure 4a shows the relationship between the distance on the detector and the angle between crystallographic features. To plot this figure, we have separately considered each identified pole as the center of projection, and plotted the distance between the center and all the other poles as a function of the crystallographic angle. Overlaid are two best fit curves corresponding, in blue, to an equidistant projection, and, in red, to a pseudo-stereographic projection. As each model has been optimized separately, the corresponding ICFs are different (as shown, for instance, by the different slope at origin). It is readily visible that the experimental data are linear up to very large angles and that the best fit pseudo- stereographic projection cannot accurately reproduce the experimental distribution, which is particularly striking at large angles. Figure 4b shows the ICFs (ξ=L/k) resulting from the


fits by plotting χ2 = 1


pseudo-stereographic model gives consistently less accurate results than the equidistant model. Such an analysis shows that (i) the azimuthal equi-


NPðρexp - ρmodelÞ


distant projection closely matches the experimental data, better than the pseudo-stereographic projection; and (ii) the equidistant model is essentially immune (within accessible angles) to errors on the position of the projection center, which is virtually always unknown. In electrostatic simulations of ion trajectories, with a


geometry mimicking a full-size commercial instrument introduced by Loi et al. (2013), this linear relationship was also found to reproduce well the trend observed in the variation of the distance ρ of an ion impact to the center of the projection, which corresponds in this case to the center of the detector, as a function of the emitting angle (Larson et al., 2013) for a variety of specimen geometries. In Figure 5a, ρ is plotted as a function of the launch angle for specimens with shank angles varying from 2 to 14° and radii in the range of 20–170nm. For each distribution, a linear regression corres- ponding to an equidistant projection was calculated and is displayed as a solid line. In addition, a dashed line is displayed which shows the distribution expected from a pseudo-stereographic projection using the estimation of the average ICF derived by Loi et al. (2013). The ratio between the results of the simulations and both the linear regression and the pseudo-stereographic projection is shown in Figure 5b. For the equidistant projection, this ratio only varies within a narrow range of ±2% around unity with a standard deviation for the ratio 2σeq.=0.011, whereas for the pseudo-stereographic projection, more significant variations are observed, with 2σpseudo−st.=0.017. In order to have a better appreciation of how such


variations could affect experimental data, we have calculated the average positioning errors between the simulated dis- tance ρ on the detector and the one predicted by the pseudo- stereographic and equidistant projection models for each


2. It shows that the


Figure 4. a: Distance between the center of a set of 41 crystallographic poles observed in the analysis of a pure Al data set obtained on a LEAP 5000 XS (each pole considered as the projection center). b: Best fit image compression factor (ξ=L/k) obtained for pseudo- stereographic (red) and equidistant (blue) models, respectively, as a function of the position of the pole considered as projection center. c: Quality of the fits obtained in (b) as assessed by χ2 = 1 nomial trend lines as guides for the eye.


NPðρexp - ρmodelÞ 2. The dashed lines are poly-


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284