search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Effect of Cu on Nanoscale Precipitation Evolution 355


Table 3. Core Composition (at%) of the NiAl Nanoparticles Obtained by Proxigrams After Aging at 500°C for 4, 32, and 128 h.


4 h


at% Ni


Al


Cu Fe


Fe–NiAl


33.3±13.6 8.3±8.0 —


58.3±14.2


Fe–NiAl–Cu 12.3±2.8


20.3±3.4 39.9±4.2 27.5±3.8


Fe–NiAl 37.6±4.2


36.5±4.2 —


24.2±3.7 32 h


Fe–NiAl–Cu 24.2±3.8


24.4±3.8 38.3±4.3 13.3±3.0


Fe–NiAl 51.5±2.6


40.9±2.6 —


6.4±1.3 128 h


Fe–NiAl–Cu 28.8±4.4


29.8±4.5 36.5±4.7 4.8±2.1


The uncertainty for each concentration c is (c(1−c)/N)0.5, where N is the total number of atoms used for calculating the concentration value.


500°C, for the Fe–NiAl alloy, the equivalent radius of the NiAl nanoparticles increases continuously from ~1.6nm at 4 h to ~4.1nm at 128 h, whereas that of the Fe–NiAl–Cu alloy increases from ~1.2nm at 0.5 h to ~3.5nm at 128 h. Moreover, in the samples aged for 128 h, there is a certain number of NiAl nanoparticles with a size of 5.5–6.0nm in the Fe–NiAl alloy, whereas the NiAl nanoparticles in the Fe–NiAl–Cu alloy are all <5.5nm. It indicates that the NiAl nanoparticles of the Fe–NiAl–Cu alloy grow at a relatively slow rate, though they form earlier than those of the Fe–NiAl alloy. The number density of the NiAl nanoparticles in the Fe–NiAl alloy increases from ~0.02 ×1023m−3 at 4 h to ~1.7×1023m−3 at 32 h and then decreases to ~0.3×1023m−3 at 128 h. In comparison, the variation in precipitate number density of the Fe–NiAl–Cu sample is rather simple with aging time; the number density decreases from 15.4×1023m−3 to 1.1×1023m−3 as the aging time is increased from0.5 to 128h. In general, with increasing aging time, the nanoparticles of the two alloys grow continuously in size, whereas the number density decreases, which is coincident with the atom maps shown in Figure 4. In addition, the number densities of the NiAl nanoparticles in the Fe–NiAl–Cu alloy are always higher than those in the Fe–NiAl alloy. The compositions of NiAl nanoparticles in the Fe–NiAl


and Fe–NiAl–Cu alloys after aging for 4, 32, and 128 h are shown in Table 3. The NiAl precipitates are identified utilizing an isoconcentration surface methodology (Hellman et al., 2003) with the threshold concentration set at 20 at% (Ni + Al). The grid size is 0.2nm and the delocalization dis- tance is 3 nm. The concentrations presented in Table 3 were obtained utilizing the proximity histogram (proxigram for short) (Hellman et al., 2000). The uncertainty for each con- centration c is (c(1−c)/N)0.5, where N is the total number of atoms used for calculating the concentration value. These NiAl nanoparticles do not only consist of Ni and Al, but also contain significant amounts of Fe and Cu. With increasing aging time, the Ni and Al contents of the NiAl nanoparticles increase, whereas the Fe content gradually decreases, and the Cu content (of the Fe–NiAl–Cu alloy) remains almost con- stant. The solubility of Cu in the NiAl nanoparticles, found in the present study, is in good agreement with the obser- vations of Horing et al. (2009). In the same condition, the Ni and Al concentrations of the NiAl nanoparticles in the


Fe–NiAl alloy are higher than those in the Fe–NiAl–Cu alloy. Moreover, as the aging time increases from 32 to 128 h, the Ni and Al contents of the NiAl nanoparticles of the Fe–NiAl alloy increase from 37.6±4.2 at% and 36.5±4.2 at% to 51.5±2.6 at% and 40.9±2.6 at%, respectively, whereas the NiAl nanoparticles in the Fe–NiAl–Cu alloy show only a slight increase in Ni and Al contents. The 1-nm-thick atom maps through the centers of the


precipitates in the Fe–NiAl–Cu alloy are shown in Figure 7. The circles around the Cu segregation zone correspond to 20% Cu isoconcentration surfaces, whereas the circles around the Ni and Al segregation zone correspond to 15% (Ni +Al) isoconcentration surfaces. At the aging time of 0.5 h, Ni, Al, and Cu atoms segregate from the matrix, as shown in Figure 7a.Ni and Al are found enriched next to the Cu-rich precipitate. Similar segregation has been observed previously (Kapoor et al., 2014). With an increased aging time to 4 h, the precipitate presents a core–shell structure, with Cu particles in the core and NiAl particles in the shell, as shown in Figure 7b. Kolli & Seidman (2008) also found similar core–shell structures in the overaged stage. Figure 7c shows that at the prolonged aging of 128 h, the NiAl nanoparticle has formed on only one side of a Cu nanoparticle, which is similar to the observation of Zhang et al. (2013) when studying a Fe–Cu–Ni–Al–Mn alloy aged for 2,000 h.


DISCUSSION


Effect of Cu on the Nucleation of NiAl Nanoparticles


With the addition of Cu, the number density of NiAl nanoparticles increases dramatically, as shown in Figure 6. It can be deduced that Cu promotes the nucleation of NiAl nanoparticles. According to classical nucleation theory, the nucleation rate, giving the number of nanoparticles per unit time per volume, is expressed by (Aaronson & Legoues, 1992)


dN dt nucleation / exp -ΔG*


; kBT


(2)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284