search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 194–209, 2017 doi:10.1017/S1431927616012642


INVITED REVIEW


Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography


Ty J. Prosa,* and David J. Larson Cameca Instruments Inc., 5500 Nobel Drive, Madison, WI 53711, USA


Abstract: Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular millingmethod as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.


Key words: focused ion beam, transmission electron microscopy, atom probe tomography, specimen prepara- tion, transmission electron backscatter diffraction


INTRODUCTION


Since the invention of the field ion microscope (Melmed, 1996), and approximately a decade later the atom probe (Panitz et al., 1969), scientists have been interested in preparing needle-shaped specimens that contain certain features of interest for analysis. These features commonly include precipitates, grain boundaries (GBs), phase bound- aries, defects, and others; but now also include semi- conductor devices, nanowires (NWs), nanoparticles (NPs), and more. For many years, the specimen preparation meth- ods used to convert materials into appropriately shaped needles containing such features near the apex were not very accurate, and they often relied on a combination of artisanal persistence (Melmed, 1991), separate microscopic observa- tions [typically transmission electron microscopy (TEM) (Henjered & Norden, 1983)], and quite a bit of luck. The development of focused ion beam (FIB) instruments changed all that. In the early 1980s, Bob Waugh’s expertise with liquid


metal ion sources (Waugh et al., 1984a) enabled him (and his coworkers) to investigate the potential unique capability of a FIB instrument to monitor a field ion specimen while it was being prepared (Smith, 2016). This resulted in the first published report of using a FIB to prepare specimens for atom probe tomography (APT) (Waugh et al., 1984b). The objective of this work was to place GBs within the apex region of a field ion specimen. The FIB was found to be


*Corresponding author. ty.prosa@ametek.com Received July 25, 2016; accepted December 7, 2016


exceedingly useful at imaging such boundaries due to elec- tron channeling contrast (Smith, 2016). Figure 1 shows an image of a field ion specimen created using a FIB with a beam of ~50nm diameter using a “sideways on” sputtering approach along with specimen rotation (Waugh et al., 1984b). Although there were no atom probe data associated with this study, it serves as the origination of the use of FIBs to fabricate specimens for APT. Although there were some attempts made over the next


~15 years to use FIBs to prepare field ion specimens (Alexander et al., 1989), limited progress was made. Some speculation emerged that it was time to return to the idea of using the FIB to create specimens (Larson et al., 1998b). Over this period, substantial improvement in FIB hardware occurred, and substantial progress was being made in the use of FIB for creating and thinning specimens for TEM (Overwijk, 1993; Giannuzzi et al., 1997), as well as for shar- pening tips for atomic force microscopy (Vasile et al., 1991). This latter work showed the feasibility of using the cap- abilities of that generation of single-beam FIBs to create sharpened needle structures. Shortly thereafter, Larson et al. (1998a) showed the cap-


© MICROSCOPY SOCIETY OF AMERICA 2017


abilities of the FIB to create field ion specimens froma variety of metallic materials and multilayers using different methods of sharpening, including annularmilling. These investigations also included studies of the effects of ion beam energy and imaging time on Ga-implantation specimen damage (Larson et al., 1999). The annular milling method, first suggested as shown in Figure 2, along with the low-energy modification later reported by Thompson et al. (2006, 2007), still forms the basis for a variety of current sharpening procedures being


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284