search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
302 Andrew J. London et al.


be resolved. Some isotopes have a very low isotopic abun- dance (below the quantification limit of the atom probe) and may reduce the reliability of the overlap separation. Thus, a minimum isotopic abundance is required for the isotope to


be considered present, e.g., a value of ~0.2% to exclude the 18O isotope.


Local Environment To define the local environment around each overlapped ion, either a sphere centered around the ion or a number of that ion’s nearest neighbors is used, as shown in Figure 2. Ions from this local neighborhood are used to create a mass spectrum and the counts of the ions from this spectrum are used to deconvolute the peak overlaps. A sphere of fixed radius gives a fixed spatial resolution around each ion, however, this sphere will contain a variable number of ions and hence have a varying degree of compositional uncertainty. Alternatively, specifying a number of nearest neighbors gives a fixed number of ions (fixed compositional certainty) but a variable spatial resolution.


Separating Overlaps


The counts for each mass peak are given by specific ranges of m/z values (Defining Overlaps section). This has the advantage over spectral fitting methods used by Cairney et al. (2015), which require a pure reference spectrum to perform the fitting. The approach used here assumes a linear com- bination of ion counts {n} divided into separate peaks as described by their isotopic abundance [A]. The counts {r} from each peak are contained within the specified range windows. For example, for two ions producing three mass peaks, this can be expressed in matrix algebra as


2 4


Ai;1 Aj;1 Ai;2 Aj;2 Ai;3 Aj;3


3 5


=


ni nj


8 <


: ;


r1 r2 r3


If the ions have a natural isotopic abundance, then [A]is


known. [A] contains one column for each ion and each row contains the contribution of that ion to one specific m/z position. {r} contains the counts for each peak observed from the atomprobe data. This leaves the ion counts {n}, which is unknown. Unless equation (1) is rank deficient (Defining Overlaps section), then there are at least as many ranges as unknown ions, meaning this is an over-constrained


ab r RESULTS


Case Study 1 ODS steels contain complex oxide phases which produce molecular oxygen-containing species during the atom probe experiment. Due to the differing chemistry of the oxide clusters, different ionic species can evaporate from different clusters. Figure 3a shows the mass spectrum from the 31–33Da range of two different clusters. These two clusters have very different ionic compositions, with one containing predominantly TiO2+ ions and the other containing onlyO2


+


ions in the 32Da peak. The ions from the 32Da peak of an ODS steel are shown in Figure 3b. Inspection of the global mass spectrum experiment shows small peaks from TiO2+ ions as well as a significant additional contribution to the 32Da peak from O2


+ ions overall. Figure 3c shows the per-


Figure 2. The local environment may be defined by (a) a sphere around the target ion, or (b) a number of nearest neighbors.


ion deconvoluted data using a 1nm spherical local environment. The deconvoluted data show that most of the oxide clusters contain TiO2+ ions, however, aO2-rich cluster


9 =


: (1)


mathematical problem. The simplest method to solve for {n} is to minimize the squared residual; this is called least squares (LS) (Lawson & Hanson, 1995). The application of LS to solve peak overlaps is described elsewhere (Gault et al., 2012; Larson et al., 2013). However, Miller et al. (1996) describe solving the same mathematical problem using maximum likelihood estimation (MLE). MLE is superior to LS when treating discrete data with limited counts (Maus et al., 2001), but is less numerically stable and somewhat more computationally intensive than LS. In our imple- mentation, MLE was roughly ten times slower than LS, but was considered an acceptable trade-off for the improved result. The formalism given by Miller et al. (1996) was an analytical solution for a specific species overlap and therefore of limited applicability. However, we have devised a method to solve any arbitrary set of overlapping peaks using the following likelihood function:


L r; n ðÞ= r ðÞ fg Tlog A fg½ n For any particular set of overlapping peaks (any [A]) and


an initial guess of {n}, this function can be maximized by a numerical method to return the most likely {n}, for a given {r}. From {n}, the most likely ionic composition of the overlapped mass peak is calculated.


Identity Assignment


Using the local ionic composition, computed by the method above, the identity of an overlapped ion can be reassigned. This reassignment is made probabilistically and weighted by the deconvoluted ionic composition. If an ion has a composition of 10% X and 90% Y, then ionic identity is assigned as X or Y at random but with a 10/90 weighted probability. Relabeling probabilistically gives the advantage that the resulting data can be used with conventional workflows such as composition line profiles and proximity histograms as demonstrated in the following section.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284