search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Evaluation of Clusters in a RPV Weld 381


Figure 8. Material irradiated to 2.0×1023n/m2, laser pulsed ana- lysis. a: Nearest neighbor distribution for Ni and Mn for first- and eighth-order nearest neighbors. b: Relative number of nonrandom clusters for first- and eighth-order dependent on Nmin. dmax is 0.5nm for N = 1 and 0.75nm for N = 8.


decreasing the possibility of identifying small clusters. For this material the small clusters are of interest and hence the use of higher orders seems to be disadvantageous.


Influence of Density Variations


The atom density within a data set varies, due to crystal- lographic effects (i.e., trajectories being altered at the edges of the atomic planes) (Stephenson et al., 2007; Gault et al., 2012). The MSM is affected by this effect as it is using distances to define clusters. Close to poles, the density is much lower than elsewhere, see Figure 9a. The expected density with a detection efficiency of 37% is 31 atoms/nm3 for bcc iron. Histograms of the density distributions for one laser analysis and one voltage analysis can be seen in Figure 9b. In general, the density distributions are wider when using laser pulsing. The distribution will also differ depending on which crystallographic directions are included within the field of view. A part of the contribution to low density in Figure 9b comes from the edges of the analyzed volume. There is a large spread in the density, up to around 60 atoms/nm3, in some cases up to 75 atoms/nm3 or more. In regions of low density, the cluster parameter dmax will


tend to be too small, and some small clusters might bemissed in these regions. In order to avoid this, Stephenson et al. (2007) excluded volumes of low density at poles and high- density volumes around these low-density volumes by the use of 100 NN distances. Clusters in high-density regions might be too large or too many due to dmax being too large,


that is random fluctuations in these regions being identified as clusters. Thus, also high-density volumes can be removed in order to improve the cluster analysis. In this paper, iso- density surfaces are used for their simplicity, with a voxel size of 2×2×2nm3 (and delocalization of 3×3×1.5nm3)in order to make the surfaces smooth. The effect of removing the regions can be seen in Figure 10. A full analysis is com- pared with an analysis where all volumes with a density smaller than 25 atoms/nm3 were removed and one where all volumes of density <25 and >55 atoms/nm3 were removed. The limits were put so that the volume remaining should still be large, in this case the number of ions used decreased by merely 15%. The NND in Figure 10a shows a small effect from removing the low-density regions. In Figure 10b the influence on the choice of Nmin is shown for a dmax of 0.50nm. Removing the volumes of high density makes it possible to choose a smaller Nmin and thereby detect smaller clusters without the risk of identifying random fluctuations in the matrix composition as clusters. With a level of toler- ance of 0.995, Nmin could be decreased from 16 to 13 owing to the removal of high-density regions.


DISCUSSION


The MSM method has been used in order to identify fine- scale clustering in irradiated RPV welds. The results of the method are strongly dependent on the choice of parameters, and the parameters need to be adjusted dependent on the features studied, which is important to consider when com- paring different analyses and different studies. Here, some approaches to the choice of parameters are studied. Using the relative number of nonrandom clusters (Fig. 5), with a


threshold value close to 1, is a relatively easy and fast way of finding a reasonable value for dmax. The elegant methods proposed by Stephenson et al. and Jägle et al. require some more advanced analysis of the data set, fitting CSR dis- tributions to the first-order NNDs that are not bimodal for small and diffuse clusters. The simplified version of the method proposed by Jägle et al. gave similar values for the parameters as the comparison with isoconcentration sur- faces and the usage of relative number of nonrandom clusters. A sensitivity analysis, investigating the impact on the


cluster number density to small changes in the parameters, was performed for the two irradiated materials. According to the analysis above, dmax was set to 0.50nm and Nmin to 18, that is with a low tolerance to random clusters (see Fig. 5). For the sensitivity analysis, dmax was varied by ±0.05nm and Nmin was varied by ±2. These variations are regarded as


moderate and represent reasonable parameters. For the high fluence material, the cluster number density was found to be 7.7 ×1023 clusters/m3 (with dmax = 0.50nm and Nmin = 18). The impact on the number density of changing the para- meters within the stated ranges was small. At most, the number density decreased by 7% or increased by 5%. However, the cluster number density of the low fluence


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284