Laser-Pulsed Atom Probe Analysis Condition 441 REFERENCES
ANDRÉN, H.-O. (2001). Microstructures of cemented carbides. Mater Des 22, 491–498.
ANGSERYD, J., LIU, F.,ANDRÉN, H.-O.,GERSTL, S.S.A.&THUVANDER,M. (2011). Quantitative APT analysis of Ti(C,N). Ultramicroscopy 111, 609–614.
BHADESHIA, H.K.D.H. & WAUGH, A.R. (1982). Bainite: An atom-probe study of the incomplete reaction phenomenon. Acta Metall 30, 775–784.
BLAVETTE, D., BOSTEL, A., SARRAU, J.M., DECONIHOUT,B. & MENAND, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432–435.
BUNTON, J.H.,OLSON, J.D., LENZ, D.R.&KELLY, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418–427.
CEREZO, A., CLIFTON, P.H., GOMBERG,A.&SMITH, G.D.W. (2007). Aspects of the performance of a femtosecond laser-pulsed 3- dimensional atom probe. Ultramicroscopy 107, 720–725.
DA COSTA, G.,VURPILLOT, F., BOSTEL, A., BOUET,M.&DECONIHOUT,B. (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 13304.
DE GEUSER, F., GAULT, B., BOSTEL,A.&VURPILLOT, F. (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536–543.
DIERCKS, D.R. & GORMAN, B.P. (2015). Nanoscale measurement of laser-induced temperature rise and field evaporation effects in CdTe and GaN. J Phys Chem C 119, 20623–20631.
FOMENKO, V.S. (1966). Chapter 1 chemical elements & Chapter 2 chemical compounds. In Handbook of Thermionic Properties: Electronic Work Functions and Richardson Constants of Elements and Compounds, Samsonov, G. V. (Ed.), pp. 53–56 & 98. New York: Plenum Press Data Division.
GAULT, B.,MOODY, M.P., CAIRNEY, J.M. & RINGER, S.P. (2012). Atom Probe Microscopy. New York: Springer.
GAULT,B., SAXEY,D.W.,ASHTON,M.W., SINNOTT,S.B.,CHIARAMONTI,A.N., MOODY,M.P.&SCHREIBER, D.K. (2016). Behavior of molecules andmolecularionsneara field emitter. New J Phys 18, 33031.
GIPSON, G.S. & EATON, H.C. (1980). The electric field distribution in the field ion microscope as a function of specimen shank. J Appl Phys 51, 5537.
GOMER, R. (1961). Chapters 1–2. Field emission and field ionization, pp. 2–49. Cambridge: Harvard University Press.
HERBIG, M., RAABE, D., LI, Y.J., CHOI,P., ZAEFFERER,S.&GOTO,S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.
HOUARD, J., VELLA, A., VURPILLOT,F.&DECONIHOUT, B. (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B 81, 125411.
HUDSON,D., SMITH,G.D.W.&GAULT, B. (2011). Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111,480–486.
HYDE, J.M., CEREZO, A., SETNA, R.P., WARREN, P.J. & SMITH, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76–77, 382–391.
ISIK, M.I., KOSTKA, A., YARDLEY, V.A., PRADEEP, K.G., DUARTE, M.J., CHOI, P.P., RAABE,D. & EGGELER, G. (2015). The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Mater 90,94–104.
JAGUTZKI, O., CEREZO, A., CZASCH, A., DÖRNER, R., HATTAß, M., MERGEL, V., SPILLMANN, U., ULLMANN-PFLEGER, K., WEBER, T.,
SCHMIDT-BOCKING,H. & SMITH, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 2477–2483.
KELLOGG, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 5320.
KELLOGG, G.L. & TSONG, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 1184.
KELLY, T.F. & MILLER, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 31101.
KINGHAM, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273–301.
KITAGUCHI, H.S., LOZANO-PEREZ,S.&MOODY, M.P. (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147,51–60.
KOBAYASHI,Y., TAKAHASHI,J.&KAWAKAMI,K.(2011).Anomalous distribution in atommap of solute carbon in steel.Ultramicroscopy 111,600–603.
KOLLI, R.P. & MEISENKOTHEN, F. (2014). The influence of experimental parameters and specimen geometry on the mass spectra of copper during pulsed-laser atom-probe tomography. Microsc Microanal 20, 1715–1726.
LA FONTAINE, A., GAULT, B., BREEN, A., STEPHENSON, L., CEGUERRA, A.V, YANG, L., DINH NGUYEN, T., ZHANG, J., YOUNG, D.J. & CAIRNEY, J.M. (2015). Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159, 354–359.
LEE,M.J.G., REIFENBERGER,R., ROBINS,E.S.&LINDENMAYR,H.G. (1980). Thermally enhanced field emission from a laser-illuminated tungsten tip: Temperature rise of tip. JAppl Phys 51, 4996.
LI, Y.J., CHOI, P., BORCHERS, C.,WESTERKAMP, S.,GOTO, S., RAABE,D.& KIRCHHEIM, R. (2011). Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater 59, 3965–3977.
LI, Y., RAABE, D., HERBIG, M., CHOI, P.-P., GOTO, S., KOSTKA, A., YARITA, H., BORCHERS,C.&KIRCHHEIM, R. (2014). Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys Rev Lett 113, 106104.
LIU, H.F. & TSONG, T.T. (1984). Numerical calculation of the temperature evolution and profile of the field ion emitter in the pulsed-laser time-of-flight atom probe. Rev Sci Instrum 55, 1779.
LOI, S.T., GAULT,B., RINGER, S.P., LARSON,D.J.&GEISER, B.P. (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107–113.
MARCEAU, R.K.W., CHOI,P.&RAABE, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239–247.
MARQUIS, E.A. & GAULT, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104, 84914.
MEISENKOTHEN, F., STEEL, E.B., PROSA, T.J., HENRY, K.T. & PRAKASH KOLLI, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101–111.
MILLER, M.K., ANGELINI, P., CEREZO,A. & MORE, K.L. (1989). Pulsed laser atom probe characterization of silicon carbide. J Phys Colloq 50, C8-459–C8-464.
MILLER, M.K., BEAVEN, P.A., BRENNER, S.S. & SMITH, G.D.W. (1983). An atom probe study of the aging of iron-nickel-carbon martensite. Metall Trans A 14, 1021–1024.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284