search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 404–413, 2017 doi:10.1017/S1431927616012745


© MICROSCOPY SOCIETY OF AMERICA 2017


Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study


Alexandre La Fontaine,1,2,* Sandra Piazolo,3 Patrick Trimby,2 Limei Yang,2 and Julie M. Cairney1,2


1School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006, Australia 2Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia 3Department of Earth and Planetary Science, Macquarie University, NSW 2109, Australia


Abstract: The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth’s geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.


Key words: atom probe tomography, mineral zircons, lead detection, deformation, dislocations, TKD


INTRODUCTION The non-conductive mineral zircon (ZrSiO4) is ideally suited for radiogenic dating of rocks. Not only does it contain trace amounts of uranium (U) and thorium (Th), enabling radiogenic dating (Williams et al., 1984; Hay & Dempster, 2009), it is also physically and chemically stable, surviving a range of geological processes such as erosion, deformation, and high-grade metamorphism (up to 900°C) (Harley et al., 2007). However, several recent studies have suggested that zircons may not be as chemically robust as once believed, especially at the micron and sub-micron scale, in regions of the sample that have been affected by deformation (Reddy et al., 2006). Measuring such chemical variations is a chal- lenge as the spatial resolution of conventional geochemical analysis techniques such as sensitive high-resolution ion microprobe (SHRIMP) and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) is in the range of 5–15 μm and 15–50 μm, respectively. Atom probe tomography (APT) is a powerful micro-


scopic technique that can provide three-dimensional (3D) maps showing the position and atomic mass of individual atoms with sub-nanometer resolution. In the last 10 years, laser-assisted APT has been increasingly used to analyze oxide-based materials (Gault et al., 2012; Oberdorfer et al., 2007; Larson et al., 2008; Hudson et al., 2009; Marquis et al., 2010; Hono et al., 2011; Mazumder et al., 2011; Bachhav et al., 2011b; Sundell et al., 2012; Baik et al., 2013; Dong et al.,


*Corresponding author. alex.lafontaine@sydney.edu.au Received June 2, 2016; accepted December 19, 2016


2013; Stiller et al., 2013; Kirchhofer et al., 2014; La Fontaine et al., 2015a, 2015b; Stiller et al., 2016). APT is ideal for studying the spatial distribution of atoms across small volumes. The isotopic sensitivity of APT analysis is also an advantage for its application in the study of geological materials, where isotope ratios are commonly used to derive characteristics of the geological history of a specimen (Davis et al., 2003). For example, APT has recently been applied for the first time to U/Pb isotope dating in zircon (Valley et al., 2014, 2015), where the results were found to agree well with secondary ion mass spectrometry (SIMS)-based results. APT was also used to reveal the diffusion of trace elements at dislocations and low-angle boundaries in deformed zircons (Piazolo et al., 2016). However, unanswered questions remain about the distribution of trace elements within zir- cons, and the unique capabilities of APT applied to the fundamental study of zircons at the atomic level, mean that the technique is likely to become a common approach to investigate this important geological mineral. However, the study of minerals with laser-assisted APT


remains challenging due to decreased yield and lower data quality, which arises from both their intrinsic properties, such as low electrical conductivity and thermal diffusivity and high fractions of defects (Kirchhofer et al., 2014). There is a need for more detailed information about the influence of APT analysis parameters on data quality from zircons, and the limitations in the quantification and detectability of sig- nificant trace elements such as Pb and U. In addition, in order to investigate potential trace element diffusion within dislocations in deformed zircons, it is important to be able to identify the nature of local deformation within the region of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284