search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides 313


oxygen for rapidly oxidizing samples is a key requirement. For more inert materials, ex situ D charging can correctly identify D atoms within the metallic matrix readily, and is a feasible route for hydride analysis. There remain several concerns for estimating the


quantity of deuterium within the samples. Further work needs to be undertaken in order to fully understand the geometrical effect that arises from the use of needle samples, to which the reduced D content within these hydrides is attributed. Comparisons can be drawn with existing litera- ture on hydrided samples, such as Nb measured by ERD (Maheshwari et al., 2011; Romanenko & Goncharova, 2011).


CONCLUSIONS


In this work, we have demonstrated the capability of atom probe to performex situ hydriding studies of bulk hydrides, in the form of Pd–Rh-D. Within this material, a clear, spatially discriminated signal is observable on timescales that are, despite the small length scales inherent in APT, amenable to atom probe analysis. The stability of these hydrides was shown to be sufficient to allow for regular experimentation. However, there remains a discrepancy between the equilibrium solubilities that should be identifiable within this material, and the quantitative concentrations that have been observedwithin this work. For materials that rapidly form native oxides, it has been shown that the oxide layer itself may contain small quantities of deuterium, however an in situ approach may be a more feasible alternative (Dumpala et al., 2015), depending upon the propensity for the surface to oxidize. Further work in this area should expand the pressure/temperature space that is experimentally available to atomprobe, as well as to undertake multi-technique analyses, to fully understand the quantitative capacity of atom probe in deuterated studies.


ACKNOWLEDGMENTS


The authors acknowledge the support of the EPSRC under the HEmS Programme Grant EP/L014742/1.


REFERENCES CARLSON, D.E.&MAGEE, C.W. (1978). A SIMS analysis of deuterium diffusion in hydrogenated amorphous silicon. Appl Phys Lett 33(1), 81–83.


DUMPALA, R., HALEY,D,BRODERICK, S., BAGOT, P., MOODY,M.& RAJAN, K. (2015). In-situ deuterium charging for direct detection of hydrogen in vanadium by atom probe tomography. Microsc Microanal 21(15), 695–696.


DURBIN, D.J. & MALARDIER-JUGROOT, C. (2013). Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38(34), 14595–14617.


FLANAGAN, T.B. & OATES, W.A. (1991). The palladium- hydrogen system. Annu Rev Mater Sci 21(1), 269–304.


GEMMA, R., AL-KASSAB, T., KIRCHHEIM,R.&PUNDT, A. (2012). Visualization of deuterium dead layer by atom probe tomography. Scr Mater 67(11), 903–906.


HALEY,D,CHOI,P. & RAABE, D (2015). Guided mass spectrum labelling in atom probe tomography. Ultramicroscopy.


HALEY, D.,MERZLIKIN, S.V., CHOI,P&RAABE, D. (2014). Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int J Hydrogen Energy 39(23), 12221–12229.


ISHIKAWA, R., OKUNISHI, E., SAWADA, H., KONDO, Y., HOSOKAWA,F. & ABE, E. (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 10(4), 278–281.


KESTEN,P,PUNDT, A., SCHMITZ, G., WEISHEIT, M., KREBS, H.U. & KIRCHHEIM, R. (2002). H-and D distribution in metallic multilayers studied by 3-dimensional atom probe analysis and secondary ion mass spectrometry. J Alloys Compd 330, 225–228.


KONDA, S.K. & CHEN, A. (2015). Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater Today.


LANFORD, W.A. (1992). Analysis for hydrogen by nuclear reaction and energy recoil detection. Nucl Instrum Methods Phys Res B 66(1), 65–82.


LI, T., BAGOT, P.A.J., MARQUIS, E.A., TSANG, S.C.E. & SMITH, G.D.W. (2012). Characterization of oxidation and reduction of a palladium-rhodium alloy by atom-probe tomography. J Phys Chem C 116(7), 4760–4766.


LI,Y.&CHENG, Y.-T. (1996). Hydrogen diffusion and solubility in palladium thin films. Int J Hydrogen Energy 21(4), 281–291.


MAHESHWARI, P., TIAN, H., REECE, C.E., KELLEY, M.J., MYNENI, G.R., STEVIE, F.A., RIGSBEE, J.M., BATCHELOR, A.D. & GRIFFIS, D.P. (2011). Surface analysis of Nb materials for SRF cavities. Surf Interface Anal 43(1–2), 151–153.


MANCHESTER, F.D. (Ed.) (2000). Phase Diagrams of Binary Hydrogen Alloys. Ohio: ASM International.


MEYER, J.C., GIRIT, C.O., CROMMIE, M.F. & ZETTL, A. (2008). Imaging and dynamics of light atoms and molecules on graphene. Nature 454(7202), 319–322.


MILLER,M.K., CEREZO,A., HETHERINGTON,M.G. & SMITH, G.D.W. (1996). Atom Probe Field IonMicroscopy.Oxford:Clarendon Press.


NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (2001). ‘Anderson Darling Test.’ Available at http://www.itl.nist.gov/ div898/software/dataplot.html/refman1/auxillar/andedarl.htm, (retrieved April 24, 2016).


PAPATHANASSOPOULOS,K. &WENZL,H. (1982). Pressure-composition isotherms of hydrogen and deuterium in vanadium films measured with a vibrating quartz microbalance. J Phys F Met Phys 12(7), 1369–1381.


ROMANENKO,A.&GONCHAROVA, L.V. (2011). Elastic recoil detection studies of near-surface hydrogen in cavity-grade niobium. Supercond Sci Technol 24(10), 105017.


SCHWARZ, R.B., BACH, H.T., HARMS,U.&TUGGLE, D. (2005). Elastic properties of Pd-hydrogen, Pd-deuterium, and Pd-tritium single crystals. Acta Mater 53(3), 569–580.


SUNDELL,G., THUVANDER,M. & ANDREN,H.-O. (2016).Barrier oxide chemistry and hydrogen pick-upmechanisms in zirconiumalloys. Corros Sci 102,490–502.


TAKAHASHI, J., KAWAKAMI, K., KOBAYASHI,Y. & TARUI, T. (2010). The first direct observation of hydrogen trapping sites in TiC


precipitation-hardening steel through atom probe tomography. Scr Mater 63(3), 261–264.


TAKAHASHI, J., KAWAKAMI,K. & TARUI, T. (2012). Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scr Mater 67(2), 213–216.


THIEBAUT, S., BIGOT, A., ACHARD, J.C., LIMACHER, B., LEROY,D.& PERCHERON-GUEGAN, A (1995). Structural and thermodynamic properties of the deuterium-palladium solid solutions systems: D2-[Pd (Pt), Pd (Rh), Pd (Pt, Rh)]. JAlloy Compd 231(1), 440–447.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284