search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
438 Zirong Peng et al.


Figure 6. Schematic drawing showing the relationship between the evaporation field and temperature for two different cases. The red line represents the APT experiments done in this work with cemented tungsten carbide sample and 0.002 ion/pulse target detection rate. The blue line represents the study of Kolli & Meisenkothen (2014) using copper sample and 0.01 ion/pulse nominal detection rate.


and 700 pJ energies in the green laser system, indicating that ~12 times higher laser energy is required for the large-spot green laser in the 3000X HR instrument to achieve a similar evaporation field as the more focused UV laser in the 5000 XS instrument. Here, the Kingham curves of tungsten (Kingham, 1982) were used to assess the strength of the electric field induced by varying the laser pulse energy in this work. The evaporation field of any material depends on its work function (Podchernyaeva et al., 1969). The work function of tungsten carbide is around 3.6 eV, whereas the work function of tungsten is around 4.5 eV (Fomenko, 1966). This difference will result in a shift of the Kingham curves, but a rough estimation of the filed strength is still possible using the existing curves for tungsten. As demonstrated in Figure 5b, due to the difference in laser pulse energy, the evaporation field changed in the range of 46–49 V/nm.


DISCUSSION


Comparing among Figure 2, Figure 3 and Figure 4, it can be seen that the mass resolution, the background level, the chemical composition, and the multiple fraction are affected differently by APT analysis conditions and specimen geometry. The mass resolution reflects the spread of m/n of each ion type. As m/n is calculated from the acceleration voltage, flight path length and TOF, any fluctuations in any of these three parts will contribute to deviations in m/n. Modern APT instruments, such as the ones utilized in this study, have quite stable performance. Substantial systematic fluctuations in the measurement of voltage, ion impact position and time on the detector are expected to be very low. Intrinsically, the differences in the ion trajectory will lead to variations in the flight distance. To decrease these differences, during the processing of raw data, a “correction” procedure, referred to as bowl correction, is usually applied to the data. Even if there might be some errors in the estimation of the real flight distance due to the limitations of the applied ion projection theory, this type of error should not be strongly influenced by the


analysis conditions considering that the studied material in this work is single phase and the analyzed specimens exhibited similar geometries. In APT, theTOFof an ion is calculated under the assumption that it is generated at the time of the evaporation pulse. However, in the laser-pulsingmode, the field evaporation is usually a thermally assisted process. Atoms can be field evaporated during the decay of the specimen temperature after the laser pulse (Kellogg & Tsong, 1980; Vurpillot et al., 2006, 2009), resulting in inaccurate TOF values and deteriorated mass resolution. Increasing the specimen shank angle enables faster cooling of the specimen surface, mitigating the delays in evaporation of ions and hence mass resolution will be improved. This effect explains why much better mass resolution was achieved in the 3000BTD series than in the 3000BTA series. This shank-angle-dependent mass resolution phenomenon has also been observed in several previous studies (Bunton et al., 2007; Cerezo et al., 2007; Perea et al., 2008; Tang et al., 2010). On the other hand, with respect to the same degree of error, increasing the TOF itself can also help improve the mass reso- lution. When other conditions are fixed, a higher laser pulse energy provides higher thermal input, raising the peak temperature of the specimen apex (Liu & Tsong, 1984) and correspondingly, the required base field, i.e. the standing DC voltage, will decrease. As a result, the TOF of field-evaporated ions will become relatively longer and have a wider error toler- ance. For the same reason, elevating the specimen base tem- perature can also increase mass resolution, but the effect is less distinct. Normally the specimen base temperature only varies within 100K, however after the interaction with the laser beam, the temperature of the tip apex can increase by a few hundred Kelvin (Lee et al., 1980; Kellogg, 1981; Marquis & Gault, 2008; Diercks&Gorman, 2015). In contrast to our results, earlier work in copper showed that mass resolution is degraded by increasing the pulse energy or specimen base temperature (Kolli & Meisenkothen, 2014). A possible reason is that, in that work, a much higher detection rate has been adopted (10 ions detected every 1,000 pulse). As illustrated in Figure 6, under such cir- cumstances, the impact of temperature increase on the base field is weaker. Even with a high temperature rise, the standing voltage will only decrease slightly, and thus the improvement in mass resolution therefrom will be small. However, due to this large temperature increase, the cooling of the specimen takes much longer time, resulting in pronounced delayed field evaporation of ions and substantially deteriorating mass resolution. The change in mass resolution is actually a combination


of the effects from these two above-mentioned aspects, i.e. the TOF itself (standing voltage) and the cooling of the tip apex. Comprehensive considerations are required when evaluating the impact of experimental conditions and spe- cimen geometry on the final mass resolution. Increasing the specimen radius, on the one hand, will have the negative effect that the standing voltage will be higher, whereas on the other hand, as the cooling rate is proportional to the cross- sectional area, a larger specimen radius enables faster cooling. Bunton et al. (2007) showed that for aluminum specimens, the specimen radius does not affect the mass resolution, but for the stainless steel samples, as we have


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284