search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 396–403, 2017 doi:10.1017/S1431927617000186


© MICROSCOPY SOCIETY OF AMERICA 2017


Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B


Torben Boll,1,* Kinga A. Unocic,2 Bruce A. Pint,2 and Krystyna Stiller1,*


1Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden 2Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA


Abstract: This study applies atom probe tomography (APT) to analyze the oxide scales formed on model NiAlCr alloys doped with Hf, Y, Ti, and B. Due to its ability to measure small amounts of alloying elements in the oxide matrix and its ability to quantify segregation, the technique offers a possibility for detailed studies of the dopant’s fate during high-temperature oxidation. Three model NiAlCr alloys with different additions of Hf, Y, Ti, and B were prepared and oxidized in O2 at 1,100°C for 100 h. All specimens showed an outer region consisting of different spinel oxides with relatively small grains and the protective Al2O3-oxide layer below. APT analyses focused mainly on this protective oxide layer. In all the investigated samples segregation of both Hf and Y to the oxide grain boundaries was observed and quantified. Neither B nor Ti were observed in the alumina grains or at the analyzed interfaces. The processes of formation of oxide scales and segregation of the alloying elements are discussed. The experimental challenges of the oxide analyses by APT are also addressed.


Key words: oxidation, diffusion, grain boundaries, reactive elements, atom probe tomography INTRODUCTION


Today, the most important life-limiting factor of advanced alloys for many high-temperature applications is their limi- ted oxidation/corrosion resistance and not their mechanical degradation. Essentially all potential metallic materials are unstable in


high-temperature environments and the various oxidation processes are highly exothermic. The only reason it is possible to have materials that can be used at all is that the reaction product, the oxide, may form a protective layer on the component surface (Kofstad, 1966). Thus, the development of methods for surface protection


against corrosion and oxidation of high-temperature materi- als has become an important area in modern material science. The basic principle is to raise, at the surface of an actual component, the amount of that element that forms a protec- tive oxide scale. The oxidation resistance of such an enriched layer (often existing as a coating) is then dependent of its ability to maintain a continuous surface layer of the oxide, which serves as a diffusion barrier and reduces the rate of reaction between oxygen and the underlying metal. In the case of Ni-base superalloys, developed for various high- temperature applications (e.g., turbine blades for aircrafts), the most successful oxidation protection is obtained by the formation of an Al-enriched intermetallic outer layer. During high-temperature exposure in air this layer creates, a protec- tive Al2O3-oxide layer, an alumina scale. Alumina is protec- tive as it is dense, slow-growing, well-bonded to themetal and resistant against cracking and spallation (Young, 2016).


*Corresponding authors. torben.boll@kit.edu; stiller@chalmers.se Received July 3, 2016; accepted January 16, 2017


Diffusion along alumina grain boundaries (GBs) is


recognized to be the rate-controlling transport mechanism that might be altered by the presence of alloying elements, but the exact mechanisms affecting diffusional fluxes still remain not entirely understood. One of the important issues is the fate of the base metal elements, most commonly Ni or Cr, in the oxide as solubility of these elements in alumina is quite low. Another is segregation of reactive elements (RE) Zr, Y, Hf, Ce, etc., from the alloy to the alumina GBs [often observed using analytical transmission electron microscopy (TEM)], that is known to influence growth of this oxide. However, the complex interplay between the oxide microstructure, ionic transport, and oxidation kinetics is still not completely under- stood to large extent due to the lack of atomic scale information (Pint, 1996; Haynes et al., 2002; Naumenko et al., 2016). The latest development of laser-assisted atom probe


tomography (APT) and new specimen preparation methods using focused ion beam (FIB) milling (Larson et al., 2008) opened the possibility for characterization of the thermally grown oxide scales with high sensitivity and nearly atomic spatial resolution. During the last decade, several successful APT investigations of oxides have been reported (Larson et al., 2008; Lozano-Perez et al., 2009; Marquis et al., 2010; Hono et al., 2011; Chen et al., 2012; Stiller et al., 2012; Dong et al., 2013; Viskari et al., 2013; Chen et al., 2014; Stiller et al., 2016). However,APT analyses of thermally grown oxides are far from being routine and there are stillmany challenges to overcome. This article concerns APT investigations of oxidation of


three NiAlCr alloys with different additions of RE that are mimicking the most commonly used coatings for protec- tion against oxidation at high temperatures in Ni-based superalloys (Goward, 1998). The purpose of the work was dual: (1) to demonstrate feasibility ofAPT studies of grain and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284