search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor 417


to confirm that at 0.4 nJ the expected Y:Ba:Cu:O ratios of 2:1:1:5 in the Y-211 phase and 1:2:3:7 in the Y-123 phase both deviated slightly from the expected stoichiometries due to minor Ba and O deficiencies. The chemical composition profile across the Y-123 and Y-211 phases measured as a function of distance from the interface is shown in Figure 2b. No Ce was detected within the Y-211 phase, the Y-123 phase or at the interface between them (however, due to the small data set, counting errors were comparatively large at±0.15 at %, which may have prevented the detection of Ce, if present below this threshold). Theories suggests that the mechanism of refinement of


generated at the sample tip in the atom probe. For this rea- son, the sample yielded a relatively small data set (300,000 ions), making it unsuitable for calibration analysis of the effect of experimental parameter variation on the chemical composition. The mass spectrum did however, contain sufficient ions


plotted as shown in Figure 3b. As expected increasing the laser energy, thereby reducing the applied electric field, results in a relative increase in the detection of lower charge states. The reconstruction of the calibration sample is shown in Figure 4a. This data set was used to calibrate the experimental


conditions. It is assumed that the analysis volume incorpo- rated by Figure 4a (~80×80× 300nm) is homogeneous Y1Ba2Cu3O7−δ. Note that no abrupt changes in local ion density or apparent composition are detected the data set in Figure 4a as the laser energy is changed. Figures 4b and 4c superimpose the normalized mass spectra at the lowest and highest energies, 0.05 and 0.6 nJ, respectively. A close-up of a section of the mass spectra, between 30 and 38 Da, illustrates specific differences in mass resolution resulting from chan- ges to the applied laser energy. The mass spectra shown were normalized using the O2 highest peak in both spectra.


+ peak at 32 Da, which was the


Y-211 particle size involves the formation of Y2O3 nanoparticles in solid state reactions between the super- conducting matrix and Y-211 and CeO2 to form BaCeO3 (Vilalta et al., 1997). In the present data set no evidence of Y2O3 was found. The APT analytical conditions were optimized on a


much larger 17 million-ion data set collected wholly from the Y-123 matrix. A plot summarizing the experimental condi- tions across the course of this analysis is shown in Figure 3a. The laser pulsing energies and resulting voltage adjustments (to maintain a constant ions-detected-per-pulse detection rate) were plotted as a function of the instantaneous total number of ions detected during the calibration experiment. The applied voltage directly determines the intensity of the electric field to which the sample is exposed. If the field changes, the distribution of charge-states at which ions are detected will change as a result. As such the charge-state ratios, i.e. the ratio of the detected frequency of different charge states of the same type of ion, can be used as an approximate metric to quantify the electric field (Kingham, 1982). Therefore, the charge state ratios for every ion were


1000 2000 3000 4000 5000


0


Voltage Laser Energy


0.0 3.0x106 Cu+ /Cu2+ 6.0x106 9.0x106 /CuO2+ 1.2x107


Number of Ions CuO+


Y2 1.5x107 +/Y3+ YCuO2+


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7


DISCUSSION


The following discussion and analysis are based on the pre- sumption that the chemical composition of bulk super- conducting crystal samples is close to the nominal stoichiometry of the Y1Ba2Cu3O7−δ compound, which is 7.7 at% Y, 15.3 at% Ba, 23.1 at% Cu and 53.9 at% O, assuming δ→0. This claim was substantiated by the excel- lent superconducting properties previously shown in Figure 1c. Further factors, such as analytical conditions, which can influence the accuracy of chemical composition and stoichiometry measured through APT, are analyzed and discussed in the following sections. An interesting future development would include a round robin experiment in order to establish how that would have an impact on the comparison of data from different instruments and different labs if we are to make quantitative comparisons on the same materials, such as the recent work performed by Marquis et al. (2016).


ab 10 1 0.1 0.01 0.00.1 0.20.3 /YCUO3+ YO+ 0.40.5


Laser Energy (nJ) /YO2+


YO 2 0.6 +/YO2 2+


Figure 3. a: Selected laser energy and its effect on the experimental voltage required to field-evaporate ions at a constant detection rate from the atom probe needle during an experiment designed to study the effect of experimental running conditions on detected stoichiometry. b: Measured ionic charge state ratio as a function of applied laser energy.


Voltage (V)


Laser Energy (nJ) Ratio


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284