236 Tomas L. Martin et al. The detector change appeared to give the expected
increase in detected atoms, but the effect of the change in instrument on composition was less clear-cut. In the case of the three steel samples, the composition of Fe and/or C in the particles varied between the two instruments. In the carbides of the bearing steel, significantly lower carbon content is present in the LEAP 5000 data, which we ascribe to the reduced ability of the detector to distinguish multiple hit events at the higher efficiency, despite the change in hit detection algorithm in the newer instrument. In the SG and ODS steel, the level of iron included from thematrix into the particle composition varied between the two instru- ments, although the direction of this effect differed between the two materials, with more Fe in the Cu clusters in the LEAP 3000, but more Fe in the ODS particles in the LEAP 5000 data. This effect is more challenging to explain, but the hit-finding algorithm could also play a role, as could variations in the evaporation field between cluster and matrix, or the parameters chosen for the cluster search. In general, the reliability of results between the two instruments is consistent, but the study highlights that choice of analysis parameters when making isoconcentration surfaces or cluster searches can often be more significant to the size of the observed feature than the change in detector geometry.
ACKNOWLEDGMENTS
TLM would like to thank G.D.W. Smith, J.M. Hyde and J. Zelenty for helpful discussions on small-scale segregation and clustering. The Cameca LEAP 5000 XR instrument used for the measurements in this work was supplied under EPSRC grant EP/M022803/1.
REFERENCES
AMOUYAL,Y. & SEIDMAN, D.N. (2012). Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: A comparative study. Microsc Microanal 18(5), 971–981.
BOSTEL, A., BLAVETTE, D.,MENAND,A.&SARRAU, J.M. (1989). Toward a tomographic atom-probe. Colloq Phys 50(C8), 501–506.
BUNTON, J.H., OLSEN, J.D., LENZ, D.R. & KELLY, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418–427.
CEREZO, A., GODFREY, T.J. & SMITH, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59(6), 862–866.
CEREZO, A., SMITH, G.D.W. & WAUGH, A.R. (1984). The FIM100 – Performance of a commercial atom probe system. J Phys Colloq 45, C9-329–C9-335.
DONKELAAR, J.V., YANG, C., ALVES, A.D.C., MCCALLUM, J.C., HOUGAARD, C., JOHNSON, B.C., HUDSON, F.E., DZURAK, A.S., MORELLO,A.&SPEMANN, D. (2015). Single atom devices by ion implantation. J Phys Condens Matter 27, 154204.
DOUGLAS, J.O., BAGOT, P.A.J., JOHNSON, B.C., JAMIESON, D.N. & MOODY, M.P. (2016). Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species. J Semicond Sci Technol 31, 084004.
FUECHSLE, M., MIWA, J.A., MAHAPATRA, S., RYU, H., LEE, S., WARSCHKOW, O., HOLLENBERG, L.C.L., KLIMECK,G.&SIMMONS, M.Y. (2012). A single-atom transistor. Nat Nanotechnol 7(4), 242–246.
GAULT, B.,MOODY, M.P., CAIRNEY, J.M. & RINGER, S.P. (2012). Atom Probe Microscopy, Springer Series in Materials Science, 160. New York: Springer.
GORDON, L.M., TRAN,L.&JOESTER, D. (2012). Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 6(12), 10667–10675.
HYDE, J.M., MARQUIS, E.A., WILFORD, K.B. & WILLIAMS, T.J. (2011). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 11(6), 440–447.
INOUE, K., YANO, A., NISHIDA, A., TAKAMIZAWA, H., TSUNOMURA, T., NAGAI,Y. & HASEGAWA, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109(12), 1479–1484.
JAGUTZKI, O., CEREZO, A., CZASCH, A., DÖRNER, R., HATTAß, M., HUANG, M., MERGEL, V., SPILLMANN, U., ULLMANN-PFLEGER, K., WEBER, T., SCHMIDT-BÖCKING,H.&SMITH, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 2477–2483.
KANE, B.E. (1998). A silicon-based nuclear spin quantum computer. Nature 393, 133–137.
KELLY, T.F., CAMUS, P.P., LARSON, D.J.,HOLZMAN, L.M. & BAJIKAR, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62,29–42.
KELLY, T.F. & LARSON, D.J. (2000). Local electrode atom probes. Mater Charact 44(1-2), 59–85.
KINNO, T., AKUTSU, H., TOMITA, M., KAWANAKA, S., SONEHARA, T., HOKAZONO, A., RENAUD, L.,MARTIN, I., BENBALAGH, R., SALLE,B.& TAKENO, S. (2012). Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser- assisted atom probe tomography. Appl Surf Sci 259, 726–730.
LARSON, D.J., PROSA, T.J., ULFIG, R.M., GEISER, B.P. & KELLY, T.F. (2013). Local Electrode Atom Probe Tomography:AUser’s Guide. New York: Springer.
LI, T., BAGOT, P.A.J., MARQUIS, E.A., TSANG, S.C.E. & SMITH, G.D.W. (2012). Characterization of oxidation and reduction of Pt-Ru and Pt-Rh-Ru alloys by atom probe tomography and comparison with Pt-Rh. J Phys Chem C 116(33), 17633–17640.
MARCEAU, R.K.W., CHOI,P.&RAABE, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239–247.
MEISENKOTHEN, F., STEEL, E.B., PROSA, T.J., HENRY, K.T. & PRAKASH KOLLI, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101–111.
MEISNAR, M.,MOODY, M.P. & LOZANO-PEREZ, S. (2015). Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels. Corros Sci 98, 661–671.
MOODY, M.P., GAULT, B., STEPHENSON, L.T., MARCEAU, R.K.W., POWLES, R.C., CEGUERRA, A.V., BREEN, A.J. & RINGER, S.P. (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Microsc Microanal 17(2), 226–239.
MULLER, E.W., PANITZ, J.A. &MCCLANE, S.B. (1968). The atom-probe field ion microscope. Rev Sci Instrum 39,83–86.
PANITZ, J.A. (1973). The 10cm atom probe. Rev Sci Instrum 44(8), 1034–1038.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284