search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 238–246, 2017 doi:10.1017/S1431927616012721


© MICROSCOPY SOCIETY OF AMERICA 2017


Reflections on the Projection of Ions in Atom Probe Tomography


Frédéric De Geuser,1,2 and Baptiste Gault3,*


1Université Grenoble Alpes, SIMAP, F-38000 Grenoble, France 2CNRS, SIMAP, F-38000 Grenoble, France 3Max-Planck Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Dsseldorf, Germany


Abstract: There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison with the more widely used and well-established point projection (or pseudo-stereographic projection), which underpins data reconstruction in most software packages currently in use across the community. After an overview of the reconstruction methodology, we demonstrate that the azimuthal equidistant is more robust with regards to errors on the parameters used to perform the reconstruction and is therefore more likely to yield more accurate tomographic reconstructions.


Key words: atom probe tomography, field ion microscopy, tomographic reconstruction, projection


INTRODUCTION Since the introduction of the field emission electron microscope and subsequently of the field ion microscope (FIM), it has been recognized that they are projection microscopes that provide a highly magnified image of the surface of the specimen. This projection also underpins atom probe tomography (APT) and enables the technique to analyze individual features at the sub-nanometer scale. The high spatial resolution of the FIM and its capacity to


resolve individual atomic terraces has made it a tool of choice for investigating the true nature of the projection. A field ion micrograph is indeed a projected image of the specimen surface, revealing details of its structure down to the atomic level. In the 1960s and 1970s, Brandon (1964) and Newman et al. (1967), among others, reported on the study of the properties of the projection in FIM. They compared micro- graphs with known point projections, such as gnomonic or stereographic, only to show that none of those projections often used in other microscopy techniques could be used as such. Based on the arguments of Newman, Wilkes et al. (1974) proposed that the projection led to features separated by an angle θ at the specimen surface would be separated by a distance ρ=kθ×θ at the detector. This was subsequently referred to as a linear projection. From the 1980s, the community’s focus progressively


shifted to atom probe microanalysis and then to APT. The progressive adoption of the reconstruction protocol, proposed by Blavette et al. (1982) and Bas et al. (1995), and subsequently modified to remove small-angle approxima- tions (Geiser et al., 2009; Gault et al., 2011), across the entire atom probe user base has led to a premature end of the


*Corresponding author. b.gault@mpie.de Received June 24, 2016; accepted December 12, 2016


discussions on this topic. However, as the performance of APT are routinely challenged, particularly in the analysis of complex materials, it is important to revisit the properties of the ion projection, and its intimate link to the specimen geometry. In 1999, Cerezo et al. (1999) revisited the linear


projection must be defined and that the azimuths are maintained through the projection: the ions fly within a plane that contains the main specimen axis and its original position at the specimen surface. If we assume azimuths are conserved, thenwe are dealingwith an azimuthal equidistant projection, which is a well-known and well-described pro- jection used, e.g., by geographers (Snyder, 2007), and is the projection model of the Earth represented on the United Nations emblem. More recently, Miller & Forbes (2014) also discussed the Hawkes–Kasper approach, which is an equivalent to this projection model. In this article, we provide a critical viewpoint of the


projection, and highlighted once again that it was a better representation of the actual ion projection in FIM than a pseudo-stereographic projection, but also tested its limits. Two interesting points arose from this study: the linear projection holds through a tilt series, or if the specimen is rotated about its main axis; however, the proportionality factor between the angle at the specimen surface and the distance on the detector cannot be assumed constant across all possible combinations of poles. Cerezo’s work pointed to the idea that a center of the


main projection models, showcase how a precise determi- nation of the orientation of the specimen can be achieved via the identification of the crystallographic features present in the detector hit map, and finally introduce a framework that could be generalized and form the base for a new reconstruction paradigm, which is described and discussed.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284